# Inec

Versatile wireless TSN experimentation using openwifi Ingrid Moerman, Jeroen Hoebeke, Johann Marquez-Barja



IDLAB, IMEC RESEARCH GROUP AT GHENT UNIVERSITY AND ANTWERP UNIVERSITY

# Limitations of **COTS Wi-Fi for** TSN (research)





**ID**Lab

GENT

່ເກາຍດ



### I. Research

### Time synchronization



#### Understanding Precision Time Protocol in Today's Wi-Fi Networks: A Measurement Study

Paizhuo Chen and Zhice Yang, *ShanghaiTech University* https://www.usenix.org/conference/atc21/presentation/chen

This paper is included in the Proceedings of the 2021 USENIX Annual Technical Conference.

July 14-16, 2021 978-1-939133-23-6

Universitei

Antwerpen

unec

- Software PTP
  - Reasonable accuracy with fine-tuned configurations and online calibration
  - Patching ath9k, a mature open source
     WNIC driver
- Hardware PTP
  - Most accurate
  - Requires PTP hardware timestamping clock not contained in Wi-Fi NICs or,
  - TSF timestamping provided there is a TSF counter reading interface



### 2. Validation

Early validation of upcoming Wi-Fi features on real HW



Source: C. Cordeiro, "Next-generation Wi-Fi – Wi-Fi 7 and beyond", Intel Corporation

Validation of feasibility and performance of concepts and algorithms

- Typically models and simulation studies
- Lack of validation opportunities on real system



lmec

### 3. Customization

### Control over OFDMA for latency reductions



Universiteit

Antwerpen

 $\widehat{}$ 

GENT

UNIVERSITEIT

IDLab

່ເຫາຍດ

| Step 3 | dot11ax downlink-ofdma<br>Example:<br>Device(config-wlan) # dotllax<br>downlink-ofdma | Enables the downlink connection that uses the<br>OFDMA technology.<br>Use the <b>no</b> form of the command to disable the<br>configuration. |  |  |
|--------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Step 4 | dot11ax uplink-ofdma                                                                  | Enables the uplink connection that uses the                                                                                                  |  |  |
|        | Example:                                                                              | OFDMA technology .                                                                                                                           |  |  |
|        | Device(config-wlan) # dotllax uplink-ofdma                                            |                                                                                                                                              |  |  |

Send the below two commands to disable UL scheduler, UL OFDMA

iwpriv wlan32 he\_ulofdma
wifitool wlan32 setUnitTestCmd 0x47 2 92



### Level of control = ON/OFF



# TSN research – core features Enabled by Openwifi

# Øpenwifi :World's first free Wi-Fi open full-stack chip design





 $\widehat{}$ 

GENT

UNIVERSITEIT

Universiteit

Antwerpen

IDLab

່ເຫາຍດ

# Clock synchronisation & hardware timestamping

IDLab

່ເກາຍດ

UNIVERSITEIT

GENT

Universiteit

Antwerpen



TSN () )

### Time synchronization accuracy



#### ZCU102 Kit



#### Measurement setup

M Aslam, W Liu, X Jiao, J Haxhibeqiri, G Miranda, J Hoebeke, J Marquez-Barja, I Moerman, Hardware Efficient Clock Synchronization Across Wi-Fi and Ethernet-Based Network Using PTP, *IEEE Transactions on Industrial Informatics* 18 (6), 3808-3819

| Parameters                        | No Load   | UDP Load  | TCP Load  |
|-----------------------------------|-----------|-----------|-----------|
| Mean (μ)                          | -0.279 µs | -0.330 µs | -0.325 µs |
| Standard deviation ( $\sigma$ )   | 0.820 µs  | 0.872 µs  | 0.868 µs  |
| 90% percentile (P <sub>90</sub> ) | I.4 µs    | 1.48 µs   | 1.46 µs   |







## IEEE 802.1 Qbv time-aware scheduling over Wi-Fi

Gating mechanism + time-aware scheduling for APs and end devices









UNIVERSITEIT GENT UNIVERSITEIT Antwerpen

**ID**Lab

່ເກາຍເ

### More than time-aware scheduling Time-triggered configurations

| bit position | meaning                                                           | queue specific |
|--------------|-------------------------------------------------------------------|----------------|
| [09:00]      | LBT threshold (dBm)                                               | NO             |
| [10:10]      | NAV enable                                                        | NO             |
| [11:11]      | DIFS enable                                                       | NO             |
| [12:12]      | EIFS enable                                                       | NO             |
| [14:13]      | AIFS setting. 4 different AIFS. reserved for future               | NO             |
| [15:15]      | CW enable                                                         | NO             |
| [19:16]      | CW min                                                            | YES            |
| [23:20]      | CW max                                                            | YES            |
| [25:24]      | TXOP setting. 4 different TXOP. reserved for future               | NO             |
| [29:26]      | number of retransmission                                          | NO             |
| [30:30]      | ACK Tx enable                                                     | NO             |
| [31:31]      | ACK Rx enable                                                     | NO             |
| [41:32]      | Rx sensitivity threshold (dBm)                                    | NO             |
| [43:42]      | Tx digital attenuation. 0/1/2/3: -0dB/-6dB/-12dB/-18dB            | NO             |
| [45:44]      | Rx gain control. reserved for future                              | NO             |
| [48:46]      | Tx freq channel                                                   | NO             |
| [51:49]      | Rx freq channel                                                   | NO             |
| [53:52]      | Tx CSI fuzzer control. 0: fuzzer off; 1/2/3: pattern 1/2/3        | NO             |
| [55:54]      | Tx antenna control. reserved for future                           | NO             |
| [57:56]      | Rx antenna control. reserved for future                           | NO             |
| [59:58]      | RxPHY control. smoothing; STF threshold; etc. reserved for future | NO             |

Universitei

Antwerpen

DLab

່ເຫາຍດ

Adjust contention, e.g based on number of stations in shared slots Disable contention, e.g. in case of private spectrum license

Adjust retransmissions, e.g. based on time slot duration and/or reliability needs

Adjust thresholds, sensitivity and Tx power to reduce interference and improve spatial reuse

And coordinate all this across multiple synchronized APs!



# Monitoring features

Open API exposing advanced statistics

- Tx packet statistics
- Tx Queue statistics
- Rx packet statistics

GENT

UNIVERSITEIT

Universiteit

Antwerpen

IDLab

່ເຫາຍດ

Rx gain statistics

| name                                                                                        |                                                                                    | meaning                                                                              |    |          |  |  |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----|----------|--|--|
| tx_data_pkt_need_ack_num_total                                                              |                                                                                    | number of tx data packet reported in openwifi_tx_interrupt() (both fail and succeed) |    |          |  |  |
| name                                                                                        |                                                                                    | meaning                                                                              |    |          |  |  |
| rx_data_pkt_num_total                                                                       | nu                                                                                 | number of rx data packet with both FCS ok and failed                                 |    |          |  |  |
| rx_data_pkt_num_fail                                                                        | nu                                                                                 | number of rx data packet with FCS failed                                             |    |          |  |  |
| name                                                                                        |                                                                                    | meaning                                                                              |    | n        |  |  |
| rx_data_ok_agc_gain_value_realtime                                                          | 9                                                                                  | agc gain value of rx data packet with FCS ok                                         |    |          |  |  |
| <sup>rx_data_fa</sup> Epobling                                                              | ~                                                                                  | dvanced menitoring                                                                   |    |          |  |  |
|                                                                                             | a                                                                                  | anced monitoring k                                                                   |    |          |  |  |
| rx_mgmt_fail_agc_gain_value_realti                                                          | ne                                                                                 | agc gain value of rx management packet with FCS failed                               |    |          |  |  |
| rx_ack_ok_agc_gain_value_realtime                                                           |                                                                                    | agc gain value of rx ACK packet with FCS ok                                          | эd | arm      |  |  |
| rx_mgmt_pkt_fail_mcs_realtime                                                               |                                                                                    | MCS (10*Mbps) of rx management packet with FCS failed                                |    | p        |  |  |
| rx_ack_pkt_mcs_realtime                                                                     | rx_ack_pkt_mcs_realtime MCS (10*Mbps) of rx ACK packet with both FCS ok and failed |                                                                                      |    |          |  |  |
| rx_data_ok_agc_gain_value_realtime                                                          | ag                                                                                 | agc gain value of rx data packet with FCS ok                                         |    |          |  |  |
| rx_data_fail_agc_gain_value_realtime                                                        |                                                                                    | agc gain value of rx data packet with FCS failed                                     |    |          |  |  |
| rx_mgmt_ok_agc_gain_value_realtime                                                          | ag                                                                                 | agc gain value of rx management packet with FCS ok                                   |    | (both fa |  |  |
| rx_mgmt_fail_agc_gain_value_realtime agc gain value of rx management packet with FCS failed |                                                                                    |                                                                                      |    |          |  |  |
| rx_ack_ok_agc_gain_value_realtime                                                           | ag                                                                                 | jc gain value of rx ACK packet with FCS ok                                           |    |          |  |  |

https://github.com/open-sdr/openwifi/blob/master/doc/app\_notes/driver\_stat.md



# Openwifi + TSN Driver for innovation/exploration

### Impactless association and roaming

Guaranteed latencies and no/very few packet loss









## Coordinated Spatial Reuse (C-SR) in dense deployments

Parallel interference-free transmissions – validation using openwifi + TSN features





innec IDLab UNIVERSITEIT UNIVERSITEIT



# Coordinated Spatial Reuse (C-SR) in dense deployments

Parallel interference-free transmissions - validation using openwifi + TSN features



Universiteit

Antwerpen

GENT

UNIVERSITEIT

IDLab

່ເຫາຍດ

Increased goodput



# Handling unexpected low-latency events

Dynamic traffic classification

### Approach

່ເກາຍດ

 openwifi shadow queues, served before main queue when not empty



- Dynamically reclassify incoming event to next available/suitable shadow queue
- No need to update existing schedule

 $\widehat{\blacksquare}$ 

GENT

UNIVERSITEIT

Universiteit

Antwerpen

**ID**Lab





# Customized OFDMA behavior

In progress...

### Context

- Audio use case
- Strict latency requirements
- Known communication patterns



### Approach

• OFDMA for low-latency and scalability



Source: https://cradtech.com/2018/10/25/802-11ax-ofdma-overview/

Customized OFDMA algorithm using openwifi











ÌIIIII

GENT

UNIVERSITEIT

Universiteit

Antwerpen

**ID**Lab

່ເຫາຍດ

### DEMO: openwifi AP triggering UL OFDMA on COTS client





# What's next





## TSN vision & roadmap



 $\widehat{}$ 

UNIVERSITEIT

Universiteit

Antwerpen

IDLab

່ເກາຍດ

### Focus on professional private markets

- Lower volumes, need for high-end customized solutions
- COTS solutions: focus on speed, closed-box, limited controllable features, customization not feasible

### Focus on research & innovation on relevant features

- No need for full-blown implementation of Wi-Fi standard: many Wi-Fi features are not relevant for TSN use cases
- Anticipate and validate specific new/upcoming features, e.g., roaming, advanced monitoring & control, distributed coordinated operation (C-SR, C-OFDMA, beamforming, etc.)...
- PoC validation of TSN operation in realistic use cases and real-life environments
  - Need for open prototyping platform Openwifi
  - Fully customized (fast innovation)
  - Standard compliance (e.g., customized APs and COTS clients)



### Wireless Lab & Industrial IoT Lab

Large-scale validation in realistic environments



Evaluation kit

圙

GENT

UNIVERSITEIT

Universiteit Antwerpen

**ID**Lab

່ເຫາຍເ











COTS as well as SDR RUs





# embracing a better life

Contact: ingrid.moerman@imec.be

