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Abstract—Network slicing enables multiple virtual networks
to share physical resources, allowing network operators to
deliver highly customizable and efficient networking solutions
that meet the diverse requirements of modern applications. The
automated management of network slices has been studied in
the last years to make such solutions more flexible, ready to
support new applications, and capable of optimizing network
resource utilization. Many works in the literature give a top-
down approach, focusing on the high-level decision processes,
and relying on abstracted infrastructure managers and simu-
lation tools to apply/execute such decisions. In this work, we
leverage components that we previously developed for network
monitoring, flexible traffic shaping, and Software-Defined Time-
Sensitive Networking control, to create a bottom-up approach
toward automated slice management. We describe the intricate
coordination of elements required for an automated control loop
and present the results achieved with a proof-of-concept executed
in a real testbed of wired and Wi-Fi nodes. The results show the
capability of the system to correctly identify the bottleneck of
a flow and apply corrective actions to reestablish its intended
performance level.

Index Terms—TSN, Network Programmability, SDN

I. INTRODUCTION

Network slicing allows the deployment of independent
virtual end-to-end networks running over a shared physical
infrastructure. This technology largely relies on virtualization
mechanisms to provide resource sharing and isolation. In
industries, different applications like process control, video
surveillance, alarm propagation, and object tracking often
coexist, each with its own set of requirements. There are many
challenges to be addressed when managing network slices.
First, the life-cycle management of slices and the assurance
of their performance requirements must be automated to avoid
the constant need for human intervention [1]. With multiple
slices sharing the physical infrastructure, the adaptation of
resource allocation is necessary to ensure the performance
requirements of applications. At the same time, optimized
resource multiplexing can improve the number of served slices
and increase revenues [2]. Dealing with multiple applications
with different characteristics, and keeping their performance
within the expected Key Performance Indicators (KPIs) is a
challenging task [3].

Deployments with coexisting Operational Technology (OT)
and Information Technology (IT) traffic are becoming more
likely with the evolution of Time-Sensitive Networking (TSN)

over Ethernet [4]. TSN originated from the multimedia domain
with the Audio Video Bridging (AVB) Task Group by IEEE
802.1 in 2007 [5]. The scope of TSNs was widened to
support more applications, and its standards have been proven
promising to achieve effective network resource allocation [6].

While network slicing has been the subject of several studies
in the last years, the vast majority of works focus on higher-
level aspects of slicing, relying on abstracted infrastructure
managers and simulation tools to evaluate the solutions.
Building on top of our recent works on data plane pro-
grammability using softwarized TSN functions, fine-grained
network telemetry, and Software Defined Networking (SDN)
control for TSN networks, address the challenge of slicing
management for Industrial and Multimedia TSN networks in
a bottom-up perspective [6]–[8]. We detail our data modeling
for application and slice management with insights from recent
3GPP and ETSI standards for Zero-touch network and Ser-
vice Management (ZSM) and Intent-Based Networking (IBN),
adapted for operation with our TSN Controller architecture.

The paper is organized as follows: Section II presents the
related work. Section III describes the extensions added to our
TSN Controller. Section IV details the Control Loop operation.
Section V describes the setup used for experimentation and
Section VI presents and discusses the Results. Section VII
concludes this paper.

II. RELATED WORK

In this section, we first discuss the related works addressing
network slicing mechanisms that aim to adapt the allocation
of resources towards a user- or application-specified set of
goals. In this context, works on IBN aim at managing network
infrastructure to satisfy intents, usually expressed through a
high-level language. Several works address the problem of
expressing and interpreting intents and their translation into
objective goals, metrics, or actions [9].

For industrial or critical communications, Saha et al. [10]
and Mehmood et al. [11] present architectures highlighting the
interpretation of intents and extraction of key information from
keywords. Lower-level actions are attributed to infrastructure
managers such as OpenStack. Cerroni et al. [12] propose a ref-
erence architecture for the orchestration of heterogeneous SDN
domains, with some details on JavaScript Object Notation
(JSON) messages to express intent-based requests to a virtual



infrastructure manager. These infrastructure managers abstract
details about which techniques can enforce the decisions on
the network and the evaluation is done through emulation
or simulation. In this work, we start from the low-level
enablers for traffic monitoring and shaping on heterogeneous
networks, then incrementally add the building blocks for high-
level management. Moreover, we perform an experimental
evaluation of our system on a wired/Wi-Fi testbed.

Rothenberg et al. [13] and Perepu et al. [14] propose sys-
tems for intent-based multimedia management using Quality
of Experience (QoE) feedback. The first paper targets a video-
streaming application, using estimated QoE from Quality of
Service (QoS) metrics emulated in the network. The second
paper considers a Conversational Video application for which
a QoE metric between [1, 5] must be maximized, and Ultra-
Reliable Low-Latency Communication (URLLC) and mobile
IoT applications for which the Packet Loss Rate (PLR) be-
tween [0, 1] must be minimized. The paper is focused on a
Multi-Agent Reinforcement Learning system to control bitrate
and priority for the flows and evaluates the performance using
a network emulator. Our work uses objective QoS metrics
as target KPIs to be optimized, with QoE-based management
envisioned as a future step in this bottom-up approach. There-
fore, we address the realization of slice management at a lower
level, with a Proof-of-Concept (PoC) testbed implementation.

Network slicing over Wi-Fi is also a relevant subject, as a
collaboration between Wi-Fi and cellular (5G/6G) networks
has been long envisioned [15]. Richart et al. [16] propose a
slicing mechanism for Wi-Fi Access Points (APs) combining a
queuing and scheduling mechanism. The solution is evaluated
analytically and through simulations. Isolani et al. [17] carry
out experimental work with an SDN-based approach for on-
the-fly end-to-end slice orchestration. The solution is based on
the framework from Coronado et al. [15], enhancing it with an
algorithm that periodically adjusts the airtime allocation of the
slices on a Wi-Fi AP. The system considers two slices: QoS
and best-effort; being unclear whether more slices are sup-
ported. In this work, we propose data models and algorithms
to manage slices on a higher level, and over heterogeneous
wired/Wi-Fi networks.

This work builds on our previous experimental works on
SDN-based TSN networking and flexible data plane monitor-
ing and configuration. On top of these elements, we detail a
data model based on standards under development and a Con-
trol Loop workflow for automated network slice management
using TSN functions.

III. TSN CONTROLLER AND NEW EXTENSIONS

Before describing the TSN Controller (TSNC) extensions
for this work, we briefly describe the architecture of TSNC
and TSN Agent (TSNA) shown in Figure 1, introduced in our
previous work [6]. The architecture uses a Controller/Agent
model, with the TSNAs deployed at the Network Elements
(NEs) and a centralized NE running the TSNC. In the TSNC,
the Central Network Controller (CNC) module interacts with
the TSNAs to set NE configuration and receive notifications

of important events (e.g., topology changes). Configurations
such as schedule updates and flow classification rules are sent
to the TSNAs by the CNC via ZeroMQ (ZMQ) messages.
The TSNA interprets such messages and issues the appropriate
command/API calls on the NE to set the desired configuration.
The configuration messages from the CNC can be triggered
by commands received from a user operating the network via
the User/Network Interface, or from other micro-services in
the TSNC such as the CUC and Control Loop, via the Internal
Interface. A Monitor micro-service runs a database, dashboard,
and ZMQ subscriber to receive telemetry from the NEs.
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Figure 1: TSNC/TSNA block diagram and communication
flow

A. Event System

To properly support the automated creation, management,
and termination of network slices, we added new features to
the CUC and CNC modules. The first feature is an event
system based on ZMQ Publish/Subscribe messaging. The
Centralized User Configuration (CUC) and CNC elements of
the TSNC open a publishing server socket to which other
micro-services like the Control Loop can subscribe to get noti-
fications of relevant events. The events generated by the CNC
are Node Connect: when a new node (TSNA) connects to the
network; Node Disconnect: when a node leaves the network;
Topology Update: when topology updates are detected through
the Link Layer Discovery Protocol (LLDP) protocol executed
by the TSNAs. The events generated by the CUC are App
Instance Created: when an application requests an instance
and the admission control of the CUC accepts it; App Instance
Removed: when the application ends or is terminated.

B. CUC Updates

The second improvement is on the CUC module. The CUC
is part of a fully centralized TSN network and has no strict
specifications, being vendor-specific. The vendor of the TSN
devices will supply a CUC [18]. Therefore, we propose a CUC
architecture aimed at supporting automated slice management
in cooperation with the other components of the overarching
architecture. The implementation of our CUC is inspired by



specifications of ZSM and IBN [19], [20]. In this sense, we
developed a structure for the specification of performance
requirements (in terms of KPIs) and Attributes (e.g., packet
generation pattern) of applications that will use the network.

Figure 2 describes the elements of an application Defini-
tion, and their composition to create an application Instance.
These items are specified in JSON format and loaded by
the CUC. An application Definition is a generic specification
that extends KPIs and Attributes. An application Instance
is created when an application is started (or is ready to
start). The Instance is extended with the Flow information
describing the network endpoints (addresses, ports, protocols),
and the Slice information indicating the slice allocation of the
flows. With this structure, many instances of applications with
similar characteristics and KPIs can exist in the network. The
applications can be wrapped to automatically request instances
to the CUC, or the instances can be manually created by an
operator via the Northbound Interface (NB Interface) of the
CUC.
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UL DL
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loss UL DL
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Figure 2: Composition of an application instance

The KPIs are measurable performance metrics of a network
flow, equivalent to intentExpectations from 3GPP specifica-
tions [20]. In this work, we define throughput (Bytes/s), delay
(ms), jitter (ms), and PLR (%) as KPIs, which can be measured
per-flow/per-hop using an In-band Network Telemetry (INT)
framework [7]. For each metric, the KPIs specify a lower and
upper bound, for example, delay : [0, 100] defines that the
delay must be lower than 100ms; jitter : [0, 1] defines that
the jitter must be no higher than 1 ms; loss : [0, 0] defines that
no packet loss is tolerated. If a given metric is not relevant
for an application, it can be simply set to a wide range, e.g.,
delay : [0, 10000]. Other metrics such as RSSI or RTT can
also be used as KPIs, as long as the control loop can interpret
them for the traffic analysis. These definitions are specified
for Uplink (UL) and Downlink (DL).

Attributes are an optional component of an application
definition, specifying the frequency of packet transmission
and the size of packets generated by the application. This
information is useful for flow scheduling and traffic control.
The controller might be able to allocate resources for a flow
with small packets, but not for a flow with large packets.
Therefore, if this information is known and can be specified
for the application, it might facilitate the admission of an
application instance.

The UL/DL KPIs and Attributes are combined to form
an application Definition, equivalent to an intent specification
from 3GPP [20]. Other fields in a Definition are: description of
the definition; observation period: the time in seconds for the
verification of the fulfillment of the KPIs; priority: the priority
that will be given to instances of this definition for admission
control and resource allocation; active: if this definition can
become an instance or not; label: a unique identifier of the
definition to be used when requesting/creating instances.

Finally, we have the Instance specification, which is created
on the fly based on requests received by the NB interface of the
CUC. An application wrapped to work with this system will
request an instance to the CUC before starting transmitting/re-
ceiving data. This request informs the Source/Destination
IPs, Source/Destination ports, and transport protocols. This
information is used to build the Flow structure of the instance
and generate classification rules to allocate the flows to the
appropriate slice. The Slice structure specifies to which slice
the uplink and downlink flows are allocated, and can be
changed in runtime based on decisions of the Control Loop
service. Each instance is uniquely identified by an instance id,
and a numeric app id (for services that support numeric
identification only, such as the INT Framework).

C. Instance Creation and Termination

Figure 3 describes the workflow for creating and terminating
an instance. Actions such as setting classification and INT
rules are always confirmed by the TSNA to the CNC/CUC
but were omitted in the figure. A Definition can be registered
in the CUC via the NB interface if a suitable definition for the
application is not yet registered in the CUC. Then, an Instance
Request starts the instance creation process.

First, an admission check is done by the CUC, and the
initial slice for the application is defined, depending on the
network route, KPIs, and attributes. The CUC makes calls to
the CNC to apply flow classification rules in the nodes. In
essence, the TSNAs use iptables to mark the packets of the
flow with a certain Differentiated Services Code Point (DSCP)
value, which we later assign to a certain queue for scheduling.
The INT rules are applied via API calls to elements of
the framework (detailed in reference [7]). Next, there is an
optional step of applying a new schedule to the network. This
step can be skipped if the current network configuration can
accommodate the new flows. We use time-based schedules
that follow the format defined by IEEE802.1Qbv [21], also
implemented on top of Click Router. The CUC then triggers
an event informing other services that a new instance was
created and returns the specification and a success or failure
code to the requester in the NB Interface. At this moment, the
network is ready and the application can start running.

During operation, the TSNAs transmit telemetry reports to
the Monitor module of the TSNC. These reports are stored in a
database and can be consulted by other micro-services like the
Control Loop. During the application life-cycle, the schedule
and classification rules can be modified by the Control Loop
(e.g., to change the flows to a different slice) through calls to
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Figure 3: Workflow for application instance creation

the CNC. In case of slice change, it is the responsibility of the
Control Loop to make an API call to the CUC to update the
Slice data of the instance, to keep the information consistent.

When the application terminates, it issues a termination call
to the CUC, which triggers calls to remove the classification
and monitoring rules. An event is issued announcing the
termination of the instance, and a confirmation is sent back
to the application. Instances can also be terminated manually
through the NB Interface or based on time (e.g., after an
amount of minutes/hours).

IV. CONTROL LOOP

While an application is running, the network performance
of its flows might degrade due to various circumstances,
especially when wireless links are part of the end-to-end
route. The Control Loop monitors the performance of these
applications and adjusts the network slices to guarantee that
the requested KPIs of an instance are met. We developed
a Control Loop micro-service that automatically reacts to
performance degradation events, triggering actions to identify
the main bottlenecks and take corrective actions to restore
application performance.

Figure 4 gives an overview of the flow of actions and
events of the Control Loop when any of the KPIs are not
fulfilled. The Control Loop listens to events from the CUC
and CNC. Upon detection of an instance creation event, the
module requests detailed information about the instance to the
CUC and starts a monitoring thread. This thread gets telemetry
reports from the database and compares the measurements
against the KPIs of the instance definition. If any KPI is
measured out of the expected range, a Fulfillment Report is
generated indicating which Flow (UL/DL) and which metric
(throughput/delay/jitter/PLR) is not fulfilled, and an internal
event to the main thread is triggered.
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Figure 4: Control Loop flow overview

When the main thread gets a fulfillment failed event, it
starts the analysis function, which reads the telemetry data to
identify which hops are the main contributors to performance
degradation. By default, we set the INT Framework to perform
only End-to-End (E2E) monitoring to limit data and control
plane overhead. Thus, the Hop-by-Hop (HbH) telemetry is
usually not immediately available. The analysis function then
enables the HbH monitoring for the flows and waits until
detailed telemetry becomes available. When HbH telemetry
becomes available, the analysis function generates a report
identifying the main bottlenecks of the flows. This report has a
structure indicating the hop (a tuple of source and destination
node IDs), and the telemetry measurements. The hops are
sorted according to the “bottleneck magnitude”: e.g., if the
E2E delay is 20 ms, and the delay on a hop is 15 ms, this will
be the first hop of the list in the analysis report. This way, the
corrective actions can be planned with a focus on the links
that contribute the most to the performance degradation.

After getting a complete analysis report, the main thread
schedules a update slice function. If more than one analysis
for instances with unmet KPIs is currently running, the update
slice function waits until it generates an analysis report, to
perform a network update that encompasses multiple instances.
The update slice function then acts to address the bottlenecks
and reestablish the expected KPIs. When the monitoring
thread detects that the KPIs are again fulfilled, it waits
2× observation period, then generates a fulfillment restored
event to the main thread. The main thread disables the HbH
monitoring of the flows of the instance. We define this longer
observation period to disable the HbH monitoring to ensure
that the issue is solved and no further analysis is required.

V. EXPERIMENTAL SETUP

To evaluate our PoC implementation we used a testbed with
the topology and nodes detailed in Figure 5. The topology
has 3 switches based on industrial mini PCs and firewall
appliances, one Wi-Fi AP based on Intel NUC, a wired
end node (node0), a Wi-Fi end node (node1) based on Intel
NUC, and a Controller. All nodes are time-synchronized using
Precision Time Protocol (PTP). To evaluate the operation of
this PoC, we use a simple traffic generator sending packets
every 1 millisecond from node0 to node1. This traffic generator



is wrapped to request an instance to the CUC and only
starts after the request confirmation. We ran tests with the
observation period of the application definition configured for
1, 2, and 4 seconds. The application KPIs defined that the
uplink delay of the application had to be under 10 ms.
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Figure 5: Topology for the experiments

We performed 30 repetitions for a given observation period
configuration. After 3 seconds of the start of an experiment
repetition, we started another traffic generator on the same
slice between a pair of random hops, saturating the slice on
one of the interfaces. For example, starting a saturating flow
between sw3 and the AP, saturating the slice on interface eth3
of sw3. This event triggers the reconfiguration of the network
slices to restore the performance of the monitored flow. For
this PoC, we defined a simple action of reconfiguring the class
of the monitored flow and migrating it to a different slice with
a dedicated slot in the time-based schedule. Our main goal is to
validate the complex sequence of events and actions required
for the monitoring, analysis, and identification of network
bottlenecks to perform effective automated troubleshooting.

VI. RESULTS AND DISCUSSION

Figure 6 shows the one-way delay measured by INT be-
tween node0 and node1. At the beginning of the test, the delay
is under 2 ms. After we start the background traffic, the delay
goes over the 50 ms mark. Table I shows the occurrence of
Control Loop events after the start of the background traffic.
On average, it takes 3 to 5 seconds for the unmet fulfillment to
be detected. After that, the process of enabling HbH telemetry,
gathering more data, and taking action takes another 3 to 4
seconds on average.

Observation Event time (seconds (Std.Dev.))
Period (s) Detection Action Restored

On-demand HbH Telemetry
1 3.63 (0.52) 6.73 (0.53) 11.35 (0.94)
2 3.64 (0.80) 7.60 (0.85) 13.71 (0.80)
4 5.04 (1.17) 9.06 (1.17) 17.22 (1.47)

Always On HbH Telemetry
1 3.56 (0.46) 3.57 (0.46) 8.13 (0.74)
2 4.06 (0.67) 4.06 (0.67) 10.05 (0.66)
4 4.95 (1.22) 4.95 (1.23) 13.12 (1.51)

Table I: Control Loop reaction time

As expected, the time from detection to time to action
increases according to the observation period setting. The
fulfillment is restored after 11, 13, and 17 seconds, for
observation periods of 1, 2, and 4 seconds, respectively. We
performed another set of tests where the HbH telemetry is
always on, to evaluate how much benefit this would bring at
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Figure 6: Delay measurements and system recovery according
to observation period for on-demand HbH telemetry
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Figure 7: Delay measurements and system recovery according
to observation period for always-on HbH telemetry

the cost of the telemetry overhead. The results are shown in
Figure 7 and in the second part of Table I. These results show
a faster reaction time from the control loop. From the detection
of an issue, the system took action in a fraction of a second
and recovered from the issue in a shorter time.

The time needed to recover from failures in the order
of a few seconds can be excessive for many time-sensitive
applications. The always-on approach for HbH telemetry sig-
nificantly improves the action time after an issue is detected.
The detection time can be further improved by reducing the
telemetry reporting frequency (currently once per second) and
supporting observation period configurations under 1 second.

VII. CONCLUSION AND FUTURE WORK

This paper presents a solution for network slice management
over TSN networks for industrial and multimedia applications.



Building on recent advances in network telemetry and flexible
network control enabled by INT and TSN standards, we de-
scribe a bottom-up approach for automated slice management
inspired by ZSM and Intent-based Networking definitions. We
detail the improvements implemented on our TSN Controller
architecture, as well as the data model to compose application
instances, the set of actions to prepare the network for these
applications, and the steps taken by a Control Loop to monitor
and take actions on the network upon detecting issues. These
specifications can give important insights to other researchers
and developers working on automating network operations.

The current implementation takes action on a single slice
at a time. In the future, a global optimization function will
be used to adjust the network configuration. We have also
used a simple control action, migrating the flow to a different
slice. In future steps, the actions will involve more complex
actions such as adding slots or changing their duration. The
results from this PoC show the feasibility of the complete
solution to automate the process of identifying and acting
on the network to achieve dynamic and application-specific
network troubleshooting.
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