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Abstract—In Beyond 5G (B5G) and towards the Sixth Gen-
eration (6G), the performance of vehicular communications can
be evaluated and improved through services located in the cloud
and closer to the users in the Multi-Access Edge Computing
(MEC) units. The increasing demand for connected cars requires
an optimal distribution of the available network resources to
ensure required levels of End-to-End (E2E) latency and the
reliability of the vehicular services which contributes to the safety
of the participants in traffic. The allocation of these resources
can be improved with the support of Zero-touch Network and
Service Management (ZSM). In this paper, we present a ZSM
framework for automotive services using the Smart Highway
testbed to improve the performance of vehicular services in
a realistic environment. The proposed framework consists of
decision-making processes that follow the principles of ZSM
and intent-driven management. The decisions are based on the
MEC units’ workload and availability to match the demand
from vertical services. The collected datasets from the decision-
making process algorithm are used to train a Deep Reinforcement
Learning (DRL) model and compare its results with a simple
rule-based algorithm. The results show that DRL can quickly
adapt to the dynamic environment of a testbed and outperform
the conventional rule-based approaches. This indicates that the
DRL algorithm can improve the decision-making process and
ultimately decrease the E2E latency of vehicular services.

Index Terms—zero-touch service management, intent-driven
management, testbed, Smart Highway, orchestration, deep rein-
forcement learning

I. INTRODUCTION

The increasing demand for new business-oriented services
in the Beyond 5G (B5G) towards Sixth-Generation (6G) net-
works is growing along with the constant evolution of vertical
applications [1]. These applications are service-oriented and as
such they continue to thrive as more IoT devices continue to
add up to the networks [2]. In the case of vehicular services,
features are brought closer to the user end devices from the
cloud to the edge, by using communication standards like
Intelligent Transportation System (ITS-G5) and Vehicle-to-
Everything (V2X) and taking advantage of the computing
capabilities of Roadside Units (RSUs) and modern vehicles
that are equipped with sensors integrated into On-board Units
(OBUs). As these sensors get smaller and cheaper they become
more present and generate large amounts of data collected
from surrounding and dynamic environments. This brings

new opportunities for applications in vehicular systems with
real-time features that can contribute to critical services like
collision avoidance, which have a relevant impact on the safety
of Vulnerable Road Users (VRUs).

The escalation of these vertical applications depends on the
availability of computing and network resources, which can
vary dynamically in a highly heterogeneous environment com-
posed of different technologies and providers. This requires
more agile management of programmable network functions
with the use of Software Defined Networking (SDN) and Net-
work Function Virtualization (NFV) by implementing Network
Slicing (NS) based on the specific needs of the use case.
The large-scale deployment of vehicular services in the cloud
and Multi-Access Edge Computing (MEC) for the connected
cars, implies the constant re-conditioning of computing and
network resources to manage massive flow of traffic [3], to
provide competitive Key Performance Indicators (KPIs) levels
such as low latency that contributes to maintaining the Quality
of Service (QoS) and eventually the expected Quality of
Experience (QoE). However, the available resources at the
network edge (i.e., MEC units) can be limited and distributed
within complex and heterogeneous B5G/6G networks. To
efficiently allocate computing and network resources where
they are needed, traditional MANagement and Orchestration
(MANO) operations need to cope with networks that become
more complex because of the demanding performance of
applications and devices. To tackle these challenges, Zero-
touch Network and Service Management (ZSM) techniques
can provide intelligent capabilities for automatic network and
service management [4], to efficiently manage computing
and network resources [1], along with the use of Artificial
Intelligence and Machine Learning (AI/ML) practices [1].

In this paper, we present a ZSM framework for vehicular
services, based on European Telecommunications Standards
Institute (ETSI) principles for Zero-touch service and Intent-
driven management. The framework is deployed in the form
of rule-based and Deep Reinforcement Learning (DRL)-based
zero-touch services, which perform a decision-making pro-
cess for the orchestration of vehicular services in a realistic



environment, placed in the Smart Highway testbed1. In this
testbed, we deployed a setup of Proof-of-Concept (PoC),
to validate the Zero-touch services and their impact on the
performance of vehicular services. In general, these Zero-
touch services are AI/ML-based functions and/or algorithms
to support the orchestration of services in vehicular systems
by improving the decision-making process, based on the
availability of computing and network resources. During the
orchestration of vehicular services, data is collected from the
CPU and memory workload at the edge computing units
where the services are running, and End-to-End (E2E) latency
measurements. These datasets are analyzed by the decision-
making Zero-touch service and provide decisions based on
the availability of computing and network resources. Along
with the resulting decisions, the CPU, memory and latency
data parameters are then used to train and validate a DRL
model. The goal of this experiment is to evaluate how feasible
the use of a DRL model is for making decisions to reduce
E2E latency. Latency represents a key KPI value for the QoS
of vehicular services. The DRL model is expected to adapt
to the dynamic environment that the Smart Highway testbed
provides and contribute to improving the performance of the
ZSM framework.

II. ZERO-TOUCH SERVICE MANAGEMENT AND
INTENT-DRIVEN MANAGEMENT

A. Zero-touch Management
The goal of ZSM is to automate the management of 6G

network services based on service-level policies and rules to
improve service performance [1]. This way, network opera-
tors can effectively manage network resources and enhance
network performance. ZSM also enables a self-managing
network system that can self-monitor, self-heal, and optimize
its operations. The principles for autonomous network and
services management rely on the foundation of technologies
such as SDN, NFV, MEC and NS, which enable network
programmability. Such programmability is essential for the
flexibility in automated networks and offers great advantages
to the B5G and 6G paradigms, such as the capability to opti-
mize their processes to offer minimal latency during real-time
operations, improved performance, high reliability, seamless
connection and mobility support.

One of the key targets of ZSM is to enable automated
network management across different vendors and domains
[5]. To achieve this, a common interface is needed for data
analytics and closed-loop control components. This interface
facilitates the creation, execution, and governance of single or
multiple closed-loops within end-to-end networks and enables
the adoption of ZSM by the Mobile Network Operators
(MNOs). In 2017, the ZSM Industry Specification Group
(ISG) was created by the ETSI to coordinate the efforts toward
standardization for the design of a framework for network
automation based on the definitions of principles based on
ZSM. ETSI provides descriptions for the ZSM architecture
and references that describe the support for open interfaces,
model-driven services and resource abstraction. These specifi-
cations are meant to grant ZSM the capabilities of modularity,
flexibility, scalability and extensibility [5]. ZSM techniques
are designed to improve the performance of the vertical
services that are implemented in the B5G/6G networks. Their
objectives are aligned with the vision of autonomous network

1Smart Highway: https://www.fed4fire.eu/testbeds/smart-highway/

and service management, that can be stable and highly reliable
to reduce or eliminate human intervention [3].

B. Intent-driven Management

In a ZSM environment, autonomous network solutions can
be conditioned by intent-driven approaches [6]. The oper-
ations carried out by the zero-touch services are expected
to fulfill specific requirements such as service instantiation
or termination, based on conditions that are triggered by a
wide spectrum of circumstances like service disruption or
demand escalation. Zero-touch service operations are meant
to accomplish goals that can be defined by intents, that can
be expressed in high-level but constrained language [6]. In an
autonomous framework, intents can be created and used during
runtime without previous implementation. This capability is
essential for flexibility and is part of the nature of autonomous
systems e.g., conflict detection, and conflict resolution.

The ETSI ZSM Group defines the intents as “the for-
mal specification of the expectations, including requirements,
goals, and constraints, given to a technical system” [6].
The formulation of the intents must be independent of the
technology or the vendors, for this purpose the instructional
language is constructed in an agnostic form. In [7], He et al.
explain the importance of Intent-based Networking for Vehic-
ular Edge Computing (VEC), as it enhances the capabilities of
the approaches for dynamic resource management. The authors
also propose a framework for VEC where intents are generated
in the interaction between service providers and subscribers.
These intents need processing and translation into a model
that can be consumed by network controllers across the layers
of device configurations. This approach presents an example
of how Constrained Natural Language (CNL) models can
be embedded in the communication flow where orchestration
services provide instructions for managing resources. To test
the performance of decision-making processes that allocate
network resources for vehicular services based on RSU work-
load, we experiment on the Smart Highway testbed, thanks to
the possibilities it brings for deploying PoC within realistic
conditions. The resulting datasets are valuable for the training
of the DRL model that would support the decision-making
processes of the zero-touch services.

III. SMART HIGHWAY TESTBED AND EXPERIMENT SETUP

A. The Smart Highway testbed

The Cooperative Intelligent Transport System (C-ITS)
testbed, also known as the Smart Highway [8], provides the
playground where our experimentation is carried out. This
testbed allows us to collect data based on realistic environ-
ments thanks to its seven RSUs deployed on a section span-
ning four kilometers long of the E313 highway in Antwerp,
Belgium as shown in Figure 1. The test site has been designed
to enable research in the scope of distributed/edge computing
and vehicular services [9]. The RSUs are computing-capable
units and they are part of the setup of our experiment by
hosting containerized applications such as vehicular services,
media content publishing, resource monitoring (e.g., RSUs
availability based on their CPU, memory workloads and la-
tency), decision-making processes and orchestration [2]. Each
RSU features the following [10], as displayed in Figure 1:

1) Radio and antenna units to support wireless communi-
cations with Cohda MK5 and MK6c over IT-G5 and



Fig. 1: Experiment setup on the Smart Highway testbed located at the E313 highway in Antwerp, Belgium.

LTE-V2X in the bands 5.9GHz through a PC5 interface
and 3.5GHz through a Uu interface and Peplink 5G2.

2) Computing processing units provided by General Pur-
pose Computing Units (GPCUs) that enhance the edge
computing capabilities with Intel Xeon 8 Cores and 32
GB RAM.

3) Power control unit to provide and manage energy
throughout the RSU components.

4) Backup and recovery to deal with events of failures.
5) Remote access to manage the deployed setups.
We also use an OBU, which is a mobile unit BMW X5

xDrive25d LO equipped with similar appliances as the RSUs,
as shown in Figure 1, to evaluate the E2E latency of the RSUs
which is fundamental for the performance of the vehicular
services. For monitoring network and vehicular services, ex-
ecution of stress tests, orchestration and data collection are
run as services in a containerized environment supported by
Kubernetes, as displayed in Figure 1. Our logical setup for the
experiment is organized as follows:
• RSUs 4, 6 and 7 replicate multi-site hosting deployment

while publishing status stats for monitoring purposes.
• RSU 5 contains algorithms that mimic the demands from

users by performing requests to specific RSUs selected
randomly in a specific time-lapse.

• RSU 7 also contains algorithms for orchestration,
decision-making and data collection about performance
and available resources e.g., Central Processing Unit
(CPU), memory and latency. These algorithms can be
run on any of the RSUs involved as they share similar

2Peplink 5G: https://www.peplink.com/technology/what-is-5g-with-
peplink/

Fig. 2: Exposed intent-based decision expressions published
over Zenoh.

technical characteristics. In this experiment, we deployed
them in a single RSU as the rest of the vehicular services
are distributed in the remaining RSUs.

• OBU 2 works as a mobile unit that measures the response
time from the RSUs deployed in the Smart Highway
testbed and collects data for latency records.

We relied on Zenoh3 as a means of communication between
the running applications across the RSUs and the OBU.
Zenoh is a publish/subscribe technology that provides high
compatibility within distributed systems, which makes it ideal
for a typically diverse environment at the Edge. It helps to
improve performance thanks to its noticeably low burden of
extra head information in the messages [11].

B. Intent-based decision expressions
In an autonomous management framework, the interaction

between the management services (e.g., between decision-
making and resource management) can be supported by intents
that are expressed in a declarative form [6] like the following:
deploy, terminate, scale up or scale down. These intents

3Zenoh: https://zenoh.io/



represent the properties of the expected outcome as a goal,
rather than containing a comprehensive description of the
solution. The following example exposes the declaratively
expressed decisions that were made in the context of the
orchestration of network and services presented in Figure 2.

In the case of our experiment, we take into account the
ETSI definitions for Intent-driven management in the scope
of ZSM [6], as it follows: the availability of the resources
for network and services in the RSUs is part of the input
used during the decision-making processes. After that, the
resulting output from the decision-making processes becomes
a key factor for the orchestration services. The decisions made
are presented as intentions that express the results expected
from the orchestration actions, without defining how they are
going to be executed by the defined deployment services. The
intent-based interaction between the services for monitoring,
decision-making and management services, brings flexibility
and can expand static pre-defined rules for service operations
such as scaling, instantiation or termination.

C. Experiment setup in realistic environment at the Smart
Highway testbed.

The main goal of the testbed setup is to create an environ-
ment to deploy PoC for testing and validation of zero-touch
services within the realistic environment conditions offered
by the Smart Highway testbed. These services are AI-based
functions and/or algorithms that support the orchestration
service by improving the decision-making process. Its goal
is to run algorithms that make decisions based on available
computing and network resources.

Although the experiment setup can be replicated in a
virtualized environment through simulation or modeling, the
conditions that surround the RSUs deployment allow us to
test values like latency under circumstances that produce
datasets closer to reality. This is essential for the training of
a DRL model that can later be used for the improvement
of the decision-making process, as it is later explained in
Section 3. The experimentation consists of deploying virtual
machines on RSUs 4, 5, 6 and 7 and OBU 2 of a mobile unit.
Within each RSU we have a deployment of Kubernetes-based
nodes that provide vehicular services to be consumed through
the network such as: assisted navigation, speed optimization,
obstacle detection, collision avoidance and infotainment.

To connect the nodes we use Zenoh, which allows us to
dispense with hypostatic addresses and lightweight transfer of
information with a low burden of data overhead, to monitor the
state of resource consumption on RSU 4-6 and 7 taking into
account the load level of the processors and the E2E latency.
We stress the computing and network resource usage to trigger
different reactions and collect data for training. During this
process, the selected RSUs will receive requests to access
the available vehicular services deployed in one of the RSU
nodes. In future work, we aim to interwind the stress tests
with accurate inputs from the real-time state of the traffic of
participants at the Smart Highway testbed.

There is a correlation between the increase of CPU load
and E2E latency. As concurring requests are made to push the
availability of the RSUs capacities to their limits, the generated
stress increases CPU consumption and eventually affects the
E2E latency of vehicular services depending on how busy the
RSU computing units are while processing the requests. Under
these conditions, the stressed RSU behaves as if it is under a
high level of demand. To measure the E2E latency we use
the OBU 2 (as shown in Figure 1) by sending requests to the

RSUs and calculating the response time. This information is
sent to the RSU 7 where the rest of the parameters like CPU
and memory load are collected by the monitoring services.

The higher the latency of vehicular services running on the
edge and the CPU load level of an RSU, the less availability
would be left to provide the mentioned services. Each RSU
will publish these parameters through Zenoh and they will
be evaluated or analyzed by the algorithms that are running
on RSU 7 involved in the decision-making processes. The
decision algorithms review the data obtained by the rest of
the RSUs and select the RSU that indicates the lowest latency
and CPU consumption. The earlier implementations for the
decision algorithms were rules-based and provided datasets of
parameters and decisions that are later used for training a DRL
based decision-making algorithm. The overall decisions are
expected to be reinforced by using DRL, whose performance is
later compared along with the rules-based algorithm in the next
section of this paper. The resulting output from the decisions is
expressed declaratively in sub-intents that contain the identity
of the RSU that has better resource availability, to be later
implemented by entities like Kubernetes master in our case,
for optimal performance of the network and services.

IV. DRL-BASED DECISION-MAKING TO IMPROVE
ORCHESTRATION FOR RSU SELECTION IN THE SMART

HIGHWAY TESTBED.
Distributed edge computing in the testbed, available in the

form of accessible RSUs, creates a complex and dynamic
environment. In such environments, DRL has emerged as a
suitable option for decision-making processes in recent years,
as it has been proven to effectively learn optimal strategies in
complex network environments while adapting to changing
conditions [12]. Moreover, DRL offers a solution that can
make near real-time decisions regarding which RSU should be
used for the computational task of the user. In our experiment,
we adapt the Deep Q-Network (DQN) algorithm [13], a well-
known DRL approach, to tackle the problem of RSU selection.
This is important for users, as it can affect the availability of
computing and network resources for vehicular services.

To employ the DQN algorithm, we defined the state s(t),
the action a(t), and a reward signal r(t), using the infor-
mation available from the Smart Highway testbed, described
in Section III-A. The states consist of a k long trace i.e., a
sliding window, the CPU load, the memory usage, the available
memory and the past latency for each RSU. The resulting
state is very large, which leads us to use a neural network
i.e., deep learning, for the Q-value approximation function.
The available actions represent the selection of RSU i.e.,
a(t) ∈ {1, 2, . . . , n}, where n is the number of RSUs. Finally,
we define the equation for the reward signal as follows:

r(t) = −l(t− 1), (1)

where l(t− 1) represents the achieved latency in the previous
time step. The objective of the DQN algorithm is to maximize
the reward. Thus, by selecting the negative value of the latency
as the reward signal, the algorithm will find a policy, i.e., a
series of actions, that minimizes the latency in the system.

In Algorithm 1, which acts as a Zero-touch service, we
summarize our implementation of the DQN approach for RSU
selection in the Smart Highway testbed. The algorithm starts
by initializing the policy and the target networks along with
a replay memory and proceeds by observing the initial state.
We employ an ε-greedy approach for action exploration (line



TABLE I: Notation Used in the DRL-based Solution.
Notation Description Notation Description

s state a action
r reward k sliding window size
n number of RSUs l latency
Q policy network θ policy network weights
Q′ target network θ

′
target network weights

λ soft update D replay memory size

Algorithm 1 Proposed DRL solution for RSUs selection.

1: Randomly initialise policy network Q(s, a|θ)
2: Initialise target network Q′ with weights θ

′ ← θ
3: Initialise replay memory D to capacity D
4: Observe initial state s(t) at time-step t = 0
5: for i = 1, T do
6: With probability ε select a random action
7: Otherwise select a(ti) = argmaxaQ(s(ti), a|θ)
8: Select RSU according to selected action a
9: Observe s(ti+1) and latency l(ti)

10: Determine r(ti) with Eq. (1)
11: Store experience s(ti), s(ti+1), r(ti), a(ti) in D
12: Sample random batch of J experiences from D
13: for every {s(tj), s(tj+1), r(tj), a(tj)} in batch do
14: y(tj) = r(tj)+γmaxa(tj+1)Q

′
(s(tj+1), a(tj+1))

15: end for
16: Calculate loss: Z = 1

J

∑J−1
j=0 (Q(s(tj), a(tj))−y(tj))2

17: Update Q(s, a|θ) by minimising the loss Z
18: Softly update the target network: θ

′ ← λθ+(1-λ)θ
′

19: end for

6). This means that the algorithm selects a random action, i.e.,
explore, with a probability of ε instead of using the reward with
the highest Q-value (line 7). The system then offloads the task
to the selected RSU, and after the time step passes, we observe
the next state space and determine the reward using Eq. 1 (line
10). An experience, a tuple consisting of state, action, reward
and next state, is then stored in the experience replay buffer.
The algorithm then trains the Q networks by first randomly
selecting experiences from the replay memory and calculating
the target values for training the network (line 14). This is
followed by the minimization of the loss function by gradient
descent (line 16 and line 17). The latter allows the Q-network
to learn to accurately predict the expected future rewards for
each state-action pair and thus improve its performance over
time. In the last step (line 18), the target network is softy
updated with the factor λ. Note that the training (lines 12 and
16) can be performed in parallel to other tasks to ensure fast
decision-making.

In our work, we have optimized the hyperparameters using
a comprehensive grid search methodology. We systematically
trained and evaluated the model over a predefined range of
values for each hyperparameter to determine the optimal value.
For example, for batch size, we considered values such as 16,
32, 64 and 128 and trained separate DQN models for each
batch size. We identified 32 to be the best value as larger
batches with more than 32 experiences did not perform better
and smaller batches had lower performance. The architecture
of both the policy and target networks, consisting of two dense
hidden layers with 32 neurons, was found to be the most
effective configuration, providing an optimal balance between
performance and computational cost. For the optimization, we

TABLE II: DQN Hyperparameters.
Parameter Value Parameter Value

n 3 k 8
episode length 5295 episodes 10

batch size 32 activation function ReLU
γ (reward discount) 0.9 dense layers 2

dense layer size 32 memory capacity 2000
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Fig. 3: Change in mean latency over the proportion of used
measurements gathered from the Smart Highway testbed.

used the Adam optimizer, which is known for its efficiency
in handling large datasets and complex architectures. The
detailed specifications of the remaining hyperparameters are
listed in Table II.

Figure 3 illustrates how the DQN algorithm learns from the
data collected from the Smart Highway testbed. We split the
collected data into training and test data and then used different
percentages of the training data to test the performance of
DQN. When only a fraction of the training dataset is used,
about five percent, the performance of DQN is only slightly
better than that of a random selection approach i.e., selecting
RSUs at random. However, the swift improvement leads
to better performance results than the conventional decision
algorithm. This indicates that DRL can quickly adapt to
the dynamic environment of a testbed, as it only requires
a relatively small number of data samples to outperform
conventional rule-based approaches. The performance of DRL
using the datasets from the decision-making process during
the orchestration of the vehicular services indicated promising
results based on the rapid adaptability of this algorithm in
the dynamic environment of the Smart Highway testbed. This
characteristic made DRL outperform the conventional rule-
based approach for decision-making, presenting it as a feasible
candidate for the support and improvement of the orchestration
of vehicular services.

V. CONCLUSION AND FUTURE WORK

This work presents promising results of the use of DRL
based algorithm in dynamic environments like the Smart High-
way testbed, to perform decision-making processes for im-
proving the orchestration of computing and network resources
for vehicular services. The adaptability of this algorithm
can outperform the conventional rules-based decision-making
algorithm variant. These results contribute to showcasing how
Zero-touch services based on Machine Learning (ML) prac-
tices like DRL can have a positive impact on automated and in-
telligent orchestration/network service management. However,
using these techniques presents also challenges to be tackled,
such as the intense consumption of computing resources. As
the current PoC continues to expand its features, we will
focus also on optimizing the use of DQN algorithms by
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Fig. 4: PoC planned scale-up at Podu Ros, intersection, Ias, i,
Romania

exploring strategies to reduce the computational overhead of
the DRL model. Additionally, improving the interpretability
and security of DRL algorithms for real-world applications is
proving to be a key challenge that can be addressed with PoC.
Furthermore, such works will be crucial to demonstrate that
decisions in dynamic environments can be both reliable and
comprehensible.

Several approaches have been taken to reduce the costs of
processing data like power, and bandwidth while offloading
computing tasks to a remote cloud. The use of MEC brings
computing resources to the user devices as it can reduce energy
consumption and response time [14]. Another related work
[15] proposes a scheme that uses the least absolute shrinkage
to provide a lower variation and higher rewards while solving
the data sparsity problem. As a final mention, reward shaping
can improve the performance of deep reinforcement learning
in perishable inventory management [16], and also increase
training stability and trust in the policies obtained by black
box DRL algorithms.

One of the main goals of the presented experiment was to
obtain data related to the demand for computing and network
resources under a realistic environment like the one provided
by the Smart Highway testbed. For future experiments, the
current PoC is planned for scale-up as part of the TrialsNet4
project, in the context of Smart Traffic Management (STM),
at the Podu Ros, intersection in Iasi, Romania as shown in
Figure 4. This will allow us to obtain more accurate data from
the demand received by the RSUs. This will also contribute
to validating and reproducing the PoC in different scenarios
outside of the Smart Highway testbed environment.

The aforementioned use case aims to develop applications
of B5G/6G networks supported by computing resources to
provide optimal traffic flow and improve the VRUs safety
to prevent accidents. In the case of autonomous intent-driven
management, a higher level of specialization should be de-
signed to enhance the decomposition and interpretation of the
intents across more complex and deep layers in the scope
of the orchestration. Also, extra measures for coordinating
and monitoring the intent-based interaction would assure its
proper performance and failure recovery to prevent human
intervention as it follows in the ZSM principles.
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