
Soft-W-TSN: Extending Time-Sensitive Networking
Capabilities to Wi-Fi using Virtualized Elements

Gilson Miranda Jr.∗†, Jetmir Haxhibeqiri‡, Daniel F. Macedo†, Johann M. Marquez-Barja∗
∗IDLab - imec, University of Antwerp, Belgium

‡IDLab - imec, Ghent University, Belgium
†Universidade Federal de Minas Gerais - Computer Science Department, Brazil

{gilson.miranda,johann.marquez-barja}@uantwerpen.be, jetmir.haxhibeqiri@ugent.be, damacedo@dcc.ufmg.br

Abstract—Industrial processes are becoming increasingly com-
plex, demanding accurate monitoring and timely communication
for process correction and optimization actions. Time-Sensitive
Networking (TSN) comprises a set of standards being developed
by IEEE to enable reliable and bounded low-latency communica-
tion over Ethernet networks. These standards allow an operator
to have more control over traffic prioritization and latency,
and offer features to enhance network communication reliability.
Extending such features to wireless networks is a natural step in
achieving more flexible deployments and supporting use cases
involving mobility. In this work, we present an architecture
and proof-of-concept to support extending TSN capabilities to
Wi-Fi deployments and to enable flexible deployments of Wi-
Fi access points tailored for different use cases. We show
the experimental results with a testbed highlighting the main
functionalities implemented to support an example use case.

Index Terms—TSN, Network Programmability, SDN

I. INTRODUCTION

The fast-evolving and ever-increasing complexity of in-
dustrial processes nowadays requires communication systems
for process monitoring, tracing, and control to be more re-
liable and flexible [1]. To support use cases with critical
requirements, the IEEE Time-Sensitive Networking (TSN)
Work Group has been developing a wide range of standards
to improve the reliability and predictability of Ethernet net-
works [2]. TSN standards provide a broad set of features
such as precise time synchronization, frame scheduling, frame
replication and elimination, and management capabilities for
TSN networks [3]. To leverage the advantages of wireless
networks, many studies have evaluated the extension of TSN
features to wireless domains, including Wi-Fi [4].

Wireless TSNs (W-TSNs) are a promising solution for
supporting flexibility in industrial use cases that still require
reliable low-latency communication. Despite operating on In-
dustrial, Scientific, and Medical (ISM) bands, thus susceptible
to interference from other devices, industrial environments are
commonly subject to rigorous access control and have policies
regarding Access Points (APs) installation, usage of wireless
devices in the premises, and user circulation. For example,
networks used by machinery can be deployed on different
bands than networks provided for personnel and visitors.
Unlike industrial wireless technologies such as WirelessHART
and ISA100.11a, Wi-Fi (IEEE 802.11) devices supporting TSN
can allow the coexistence of Information Technology (IT) and

Operational Technology (OT) flows, increasing flexibility and
reducing costs.

With a common technology for IT and OT, the infrastructure
can be dynamically adapted to support a wider set of use cases.
However, many hardware and software limitations hinder the
effective use of Wi-Fi for TSN applications. Hardware limi-
tations, such as the absence of a hardware clock or a limited
number of hardware packet queues, can impose constraints on
time synchronization accuracy, and scheduling capabilities and
present challenges in assigning distinct priorities to various
data flows. In some cases, the limitations can be overcome in
software (e.g., using software queues) at the cost of higher
processing times. However, even software components can
also have limitations. For instance, the drivers and firmware
available for Wi-Fi 6 (IEEE 802.11ax) devices still offer
limited access for managing some features [5].

These limitations delay full support and configurability,
particularly with open-source software, even many years after
the standard and initial commercial devices are released.
Virtualized environments provide a flexible evolution path
for communication infrastructure, allowing the adoption of
mature software without the need for hardware changes. In
this paper, we present a proof-of-concept for providing reliable
communication over Wi-Fi with TSN-like features, leverag-
ing virtualization and softwarized components. The proposed
concept enables flexible deployments of Wi-Fi infrastructures
for private industrial use cases using current technology while
keeping an open path for supporting features under develop-
ment by the community.

The paper is organized as follows: Section II provides a
brief background on TSN, as well as software and hardware
requirements. Section III describes the use case considered in
this work. Section IV describes the proposed solution. Section
V describes the experimental setup while section VI present
achieved results. Section VII concludes the paper and gives
some directions for future work.

II. BACKGROUND

TSN emerged from the multimedia domain through the
Audio Video Bridging (AVB) Task Group by IEEE 802.1
in 2007 [6]. While AVB improved IEEE 802.1 networks,
further mechanisms were necessary to meet the demands of
automotive and industrial applications [3]. The four main



pillars of TSN, as categorized by Lo Bello et al. [3] are
i) timing and synchronization; ii) bounded low latency; iii)
reliability; and iv) resource management.

The IEEE 802.1AS standard defines a method for time
synchronization using the Precision Time Protocol (PTP), such
that all nodes have a common time reference [7]. For optimal
operation, this requires the nodes to have a nanosecond-scale
precision hardware clock to achieve accurate synchronization.
The IEEE 802.1Qbv defines a method for scheduling traffic
using the Time-Aware Shaper (TAS) to ensure that time-
sensitive traffic is scheduled to arrive at its destination at a
specific time [8]. The TAS can be used to allocate different
priorities to flows and leverage hardware features such as
hardware queues and schedule offloading capabilities [9]

Other relevant standards include IEEE 802.1Qcc [10] ad-
dressing configuration models and resource management, and
IEEE 802.1CB [11] describing a method for frame replication
and elimination for redundancy and reliability improvement.
For an overview of these and other standards, we refer the
reader to the work of Lo Bello et al. [3].

Many software and hardware components need proper con-
figuration and coordination to achieve a reliable TSN network.
As standardization is ongoing and new features are expected in
the future, quickly integrating these advancements into existing
TSNs can provide competitive advantages. In previous work,
we introduced an architecture to manage wired/Wi-Fi TSN
networks, building on top of an open-source Wi-Fi chip design
with added TSN capabilities [12], [13]. In this work, we
extend our controller architecture to support Commercial-Off-
The-Shelf (COTS) Wi-Fi devices. We leverage virtualization
and softwarized components to implement TSN features in
a flexible and upgradable manner, aiming to simplify the
adoption of functionalities of Wi-Fi 6 devices yet to be
implemented, as well as keep up with evolving TSN standards
and technologies.

III. USE CASE EXAMPLE

A Wi-Fi AP is deployed in an industrial plant to support
monitoring and control applications (OT flows) but also serve
IT flows in a best-effort manner. Many similar APs provide
redundant and continuous coverage over the area. During
maintenance services, an AP can be redefined, receiving an
optimized configuration to support Augmented Reality (AR)
applications used by workers (e.g., to get real-time manuals
and assembly assistance). To support this wide set of applica-
tions, devices using the latest Wi-Fi standards are employed.

These latest technologies often take months or even years
to have proper support, especially in open-source software,
due to a lack of documentation, openness, or even inter-
est of the manufacturers in providing full-featured drivers.
As the technology matures, these functions start to become
available due to diligent work of the open-source community,
documentation releases from manufacturers, or more interest
in improving the support for the product. At this point,
integrating such technologies might require extensive updates

on already deployed infrastructure, such as kernel version
update/customization, and updating related software.

IV. PROPOSED SOLUTION

The solution builds on our Software Defined Networking
(SDN) architecture for TSN networks from our previous
work [12]. The architecture follows a Controller/Agent model,
with the entities TSN Controller (TSNC) and TSN Agent
(TSNA), that was extended to support AP virtualization. With
APs deployed as Virtual Machines (VMs), driver, firmware,
and other software updates can be extensively tested and tuned
on a testing environment, and then deployed in production by
replacing the AP VM. The solution leverages PCI Passthrough
– a feature that allows VMs to directly access a physical PCI
device and its full capabilities.

Figure 1 shows the internal components of the TSNC. For
conciseness, we left out of this paper the details of each
component, and focus on the added elements for supporting
the AP deployment using VMs. For a detailed description of
the components, we refer the reader to our previous work
in reference [12]. The figure highlights the Image Service,
which manages and stores VMs images of APs. The images
are transmitted to the APs during their initialization process.
To avoid re-sending the image every time the AP is restarted,
the TSNAs cache images locally.

Figure 2 shows the internal components of a TSNA with the
additional components for the VM-based AP deployment. The
VM Manager manages the life-cycle of VMs and the cache of
the most recently used ones. The AP can be set up using
different Operating Systems (OSs). The diagram in Figure
2 shows our Soft-W-TSN framework, implemented using
Hostapd1, Ubuntu Linux, and the Click Modular Router [14].
Other OSs such as OpenWRT2 can be used instead. The VM
has no control plane connection to the TSNC, thus we define
APIs to perform this bridging. The AP Management API is
part of the TSNA and translates the commands received from
the controller into API calls for modules inside the VM (e.g.,
to manage Hostapd/Click Router modules), through the AP
VM API (or OpenWRT APIs if that OS is used).

Management Interface
User/Network

Interface
Internal
Interface

Southbound Interface

CN
C Node Manager Network Manager

Communication Interface
RESTCONF NETCONFCUSTOM

TSN Controller

Monitor
Dashboard

Subscriber

Database

Control Loop

Control Engine

Telemetry
Analyzer

CUC

Orchestrator

Application
Registry

Image Service
VM Registry

Storage

Figure 1: TSN Controller components

1https://w1.fi/
2https://openwrt.org/



Stopped Cached VM

Hostapd

Authentication

Configuration

Click Modular RouterAP VM API

TSN Agent (AP)
Southbound Interface

Telemetry
Manager

Resource
Monitor

Traffic
Manager

Timing
Manager

AP Management API VM Manager / Cache

Running AP VM

Wired Interface
MACVTAP

Wired Interface

INT
Framework

APSwitch

Wi-Fi Interface
Driver/Firmware

PCI Passthrough

Wi-Fi Interface

Scheduler

Round-Robin
TAS

CBS

Scheduler

Round-Robin
TAS

CBS

VM Host
Environment

Classifier

Figure 2: TSN Agent with VM and Soft-W-TSN AP

The Wi-Fi interface is allocated to the VM using PCI
Passthrough, while the wired interface of the AP is bridged
using the MACVTAP driver. We use Click for the bridging
between wired and Wi-Fi interfaces in the VM, as well as to
implement the traffic shaping modules and In-band Network
Telemetry (INT). The dashed lines and arrows detail the
flow of packets through Click elements. The packets enter an
interface and go to the INT framework, where telemetry data
is appended to data packets using extended headers. Later,
a classifying element uses the DSCP field to determine in
which queue the packet must be placed. The APSwitch defines
to which interface packets must go and sends them to the
Scheduler element. The Scheduler has internal queues to buffer
the packets and has different scheduling algorithms that can
be selected. The module supports Round Robin, the Credit-
Based Shaper (CBS) algorithm (based on IEEE 802.1Qav),
and the TAS algorithm based on IEEE 802.1Qbv, which is be
the focus of our experiments.

V. EXPERIMENTAL SETUP

The topology used for this Proof-of-Concept (PoC) is shown
in Figure 3. SW1 and SW2 are TSN switches based on
industrial mini PCs, the other nodes are Intel NUCs. The AP
and CLI are equipped with Sparklan WNFT-238AX(BT) Wi-
Fi 6 boards. All nodes, including the AP VM, run Ubuntu
Server 22.04, and Linux Kernel 6.4 with real-time patches.
The AP runs Hostapd v2.11-devel. The switches and AP run
the TSNA and are connected to the TSNC, allowing us to
apply TAS schedules to node interfaces.

The PC generates 8 simultaneous UDP flows to CLI, which
is a Wi-Fi client, passing through two TSN switches (SW1
and SW2) and the AP. Each flow is allocated to a different
queue of the scheduler. The packets are captured at the egress
interface of the PC, and at the ingress Wi-Fi interface of CLI.
To correctly verify the delivery of the packets according to
the schedule applied to the AP, the CLI is synchronized via
PTP to SW2 through Ethernet, however, all data packets flow

PC

CLI

TSNA

SW1 SW2

TSNA

TSNATSNA

AP

Ethernet data connection
PTP-only connection

Data flow

TSNC

Figure 3: Topology for the experiments

through the Wi-Fi connection. We deploy 3 versions of the
AP VM, the first operating as Wi-Fi 4, the second as Wi-Fi
5, and the last one as Wi-Fi 6.

The experiments show the traffic differentiation capability
and performance of the scheduling module across different Wi-
Fi generations. We used an 8-slot schedule (with fixed dura-
tions, although varying durations are supported), allocating one
slot for each virtual queue. Slot durations ranged from 10 ms to
100 µs. We generated UDP traffic in both unsaturated (at 1000
packets per second (pps) per flow) and saturated conditions
(around 4500 pps per flow, the maximum generation capacity
of our node), with a 36-byte data payload containing sequence
numbers and timestamps. We collected one million packets at
the receiver for statistical analysis.

VI. RESULTS

We assessed the capacity packet delivery of the system
according to the TAS configuration. By comparing packet
timestamps at the Wi-Fi client to their scheduled times, we
counted the number of slot mismatches. Some mismatch
is expected due to factors such as hardware buffering and
processing at lower layers, causing packets to arrive slightly
after the slot ends.

Slot (ms)
Slot mismatch ratio (%)

Unsaturated Saturated
n ac ax n ac ax

10.0 0.54 0.51 0.43 0.39 0.56 0.29
5.0 1.25 1.52 0.88 0.75 1.87 0.55
2.5 4.41 1.89 1.66 3.44 3.99 1.11
1.0 12.72 4.03 10.43 12.22 13.89 3.78
0.5 19.14 13.15 11.61 48.85 38.64 54.81

0.25 69.67 55.08 63.95 90.86 79.28 83.07
0.1 95.24 96.12 94.63 93.34 95.15 92.44

Table I: Slot delivery mismatch ratio for Wi-Fi running on
modes n, ac, ax, for unsaturated and saturated traffic.

Table I shows the mismatch percentage according to slot
sizes, the Wi-Fi standard enabled, and the traffic type. The
table clearly shows the advantage of using IEEE 802.11ac and
ax over operating in n mode. As the recent standards allow
faster PHY layer transmissions, the packets are transmitted
faster after the software-based queuing/scheduling done by
Click. In general, lower mismatch ratios were obtained by
using the ax standard, however, we still observed significantly
lower mismatches by using ac with saturated traffic, for
slots of 500 µs and 250 µs. During preliminary tests, we



achieved higher throughput between the nodes when the AP
was configured in ac mode, and this might have been reflected
in the observed performance for saturated traffic.

We observe a steep mismatch ratio increase for slots shorter
than 1 ms. With shorter slots, packets from different flows
are sent to lower layers in shorter intervals. These packets are
again queued and subject to the CSMA mechanism. The higher
throughput allowed by the AP in modes ac and ax reduces the
packet buffering in lower network layers and results in more
accurate scheduling.

Figure 4 shows a boxplot of the arrival times of packets
within the schedule cycle, for the saturated tests with slots of
2.5 ms. Each flow (indicated by Flow ID) was assigned to a
different slot (i.e., Flow ID 0 is assigned to the first slot of 2.5
ms). Thus, the figure shows a cycle of 20 ms and each box
indicates the distribution of packets of a Flow ID through the
cycle. The distributions show that most packets are delivered
within the assigned slot. Table I shows that for this test 1.11
% of the packets were delivered out of their slots when using
ax mode. The figure allows us to visualize how the delivery
times of packets from the different flows are spread across the
schedule cycle, highlighting the gains achieved by coupling
our TAS-based scheduler with the AP in ax mode.

Figure 4: Packet delivery times for the different modes on a
schedule with 8 slots of 2.5ms

VII. CONCLUSION

In this work, we presented an architecture and test results
from a PoC using virtualization and softwarized components to
flexibly implement TSN capabilities on COTS Wi-Fi devices.
We evaluated the benefits of deploying upgraded versions of
the AP, enabling more functionalities of our Wi-Fi interface,
as an example of how the architecture can leverage software
upgrades for cutting-edge technologies. In future work. we will
study extending the VMs to run edge applications and provide
functions other than operating as an AP.

ACKNOWLEDGMENT

This research is partially funded by the imec ICON
project VELOCe - VErifiable, LOw-latency audio Com-
munication (Agentschap Innoveren en Ondernemen project
nr. HBC.2021.0657). This research is also supported by
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Supe-
rior - Brasil (CAPES) - Finance Code 001, and São Paulo Re-
search Foundation (FAPESP) with Brazilian Internet Steering
Committee (CGI.br), grants 2018/23097-3 and 2020/05182-3.

REFERENCES

[1] P. A. M. Devan, F. A. Hussin, R. Ibrahim, K. Bingi, and F. A. Khanday,
“A survey on the application of wirelesshart for industrial process
monitoring and control,” Sensors, vol. 21, no. 15, 2021. [Online].
Available: https://www.mdpi.com/1424-8220/21/15/4951

[2] J. L. Messenger, “Time-Sensitive Networking: An Introduction,” IEEE
Communications Standards Magazine, vol. 2, no. 2, pp. 29–33, jun
2018. [Online]. Available: doi.org/10.1109/mcomstd.2018.1700047

[3] L. Lo Bello and W. Steiner, “A Perspective on IEEE Time-Sensitive
Networking for Industrial Communication and Automation Systems,”
Proceedings of the IEEE, vol. 107, no. 6, pp. 1094–1120, 2019.
[Online]. Available: doi.org/10.1109/JPROC.2019.2905334

[4] J. Haxhibeqiri, X. Jiao, M. Aslam, I. Moerman, and J. Hoebeke,
“Enabling TSN over IEEE 802.11: Low-overhead time synchronization
for Wi-Fi clients,” in ICIT2021, the 22nd International Conference
on Industrial Technology, 2021, pp. 1068–1073. [Online]. Available:
doi.org/10.1109/ICIT46573.2021.9453686

[5] E. Mozaffariahrar, F. Theoleyre, and M. Menth, “A survey of wi-fi 6:
Technologies, advances, and challenges,” Future Internet, vol. 14, no. 10,
2022. [Online]. Available: https://www.mdpi.com/1999-5903/14/10/293

[6] N. Finn, “Introduction to Time-Sensitive Networking,” IEEE
Communications Standards Magazine, vol. 2, no. 2, pp. 22–28,
2018. [Online]. Available: doi.org/10.1109/MCOMSTD.2018.1700076

[7] “IEEE Standard for Local and Metropolitan Area Networks–Timing
and Synchronization for Time-Sensitive Applications,” IEEE Std
802.1AS-2020 (Revision of IEEE Std 802.1AS-2011), pp. 1–421, 2020.
[Online]. Available: doi.org/10.1109/IEEESTD.2020.9121845

[8] “IEEE Standard for Local and metropolitan area networks –
Bridges and Bridged Networks - Amendment 25: Enhancements for
Scheduled Traffic,” IEEE Std 802.1Qbv-2015 (Amendment to IEEE
Std 802.1Q-2014 as amended by IEEE Std 802.1Qca-2015, IEEE Std
802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor 1-2015), pp. 1–57,
2016. [Online]. Available: doi.org/10.1109/IEEESTD.2016.8613095

[9] T. L. D. Project, “Linux iproute2 tc-taprio man page,” Man
page, 2018, accessed on July 20, 2023. [Online]. Available:
https://man7.org/linux/man-pages/man8/tc-taprio.8.html

[10] “IEEE Standard for Local and Metropolitan Area Networks–Bridges
and Bridged Networks – Amendment 31: Stream Reservation Protocol
(SRP) Enhancements and Performance Improvements,” IEEE Std
802.1Qcc-2018 (Amendment to IEEE Std 802.1Q-2018 as amended
by IEEE Std 802.1Qcp-2018), pp. 1–208, 2018. [Online]. Available:
doi.org/10.1109/IEEESTD.2018.8514112

[11] “IEEE Standard for Local and metropolitan area networks–
Frame Replication and Elimination for Reliability,” IEEE
Std 802.1CB-2017, pp. 1–102, 2017. [Online]. Available:
doi.org/10.1109/IEEESTD.2017.8091139

[12] G. Miranda, E. Municio, J. Haxhibeqiri, J. Hoebeke, I. Moerman, and
J. M. Marquez-Barja, “Enabling time-sensitive network management
over multi-domain wired/wi-fi networks,” IEEE Transactions on
Network and Service Management, pp. 1–1, 2023. [Online]. Available:
https://doi.org/10.1109/TNSM.2023.3274590

[13] X. Jiao, W. Liu, M. Mehari, M. Aslam, and I. Moerman, “openwifi:
a free and open-source IEEE802.11 SDR implementation on SoC,” in
2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring),
2020, pp. 1–2. [Online]. Available: https://doi.org/10.1109/VTC2020-
Spring48590.2020.9128614

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek,
“The Click modular router,” ACM Transactions on Computer Systems
(TOCS), vol. 18, no. 3, pp. 263–297, 2000. [Online]. Available:
https://doi.org/10.1145/354871.354874


