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Abstract—As network management operations increasingly
rely on automation and finer control actions, there is a need
for precise telemetry systems. In-band Network Telemetry (INT)
methods use data packets to carry telemetry and give real-
time insights about network performance. Existing solutions
often require specialized hardware or offer limited runtime
configuration options. This work presents an INT Framework
for heterogeneous private networks, targeting industrial and
multimedia applications. The framework is designed to be flexible
and runtime-reconfigurable, addressing challenges in real-world
applications. We provide implementation details of our elements
supporting the configurability and the consolidation of raw
telemetry into high-level Quality of Service (QoS) metrics. We
evaluated the framework in a testbed with wired and wireless
devices. The results show the accuracy in monitoring QoS, as
well as an analysis of synchronization requirements, showcasing
the feasibility of our framework for solutions requiring precise
and flexible QoS monitoring.

Index Terms—In-band Network Telemetry, QoS

I. INTRODUCTION

Network management operations are becoming more au-
tomated and control actions are being performed in smaller
periods, requiring more fine-grained and accurate measure-
ments [1], [2]. Network monitoring is an essential task that
affects activities such as network planning, traffic engineering,
and troubleshooting. Monitoring can be achieved in different
ways, with distinct levels of intrusion, visibility, and accuracy.
In-band Network Telemetry (INT) methods use data packets
to carry telemetry information, before the data processing and
consolidation by collectors [2].

Recent INT methods offer precise insights into network
flows, enabling real-time detection of issues such as jitter,
latency, packet loss, and uneven load-balancing [3]. Sev-
eral proposals carry low-level implementations to achieve
high throughput [4]. However, such solutions often require
specialized hardware and are subject to hardware-imposed
limitations. Considering the trend of Network Functions Virtu-
alization (NFV) and the widespread deployment of networked
services as containers and virtual machines, there is a potential
interest in integrating INT systems into a software stack, fully
decoupled from the underlying hardware infrastructure.

Depending on the network and application characteristics,
operators need data with distinct levels of granularity and
precision, which is beyond the capability of existing tech-
niques [2]. Thus, an INT solution should also be highly
flexible and reconfigurable in runtime. For example, during
troubleshooting, monitoring frequency can be increased, or in-
termediate hop monitoring can be toggled on for more granular
measurements or off for saving resources, respectively [5].

In this work, we present an INT Framework for heteroge-
neous private networks, targeting industrial and multimedia ap-
plications. Our implementation partially follows the standards
in development but deviates in some points as we identify
limitations of the existing proposals for our industrial and
multimedia use cases. We describe the Application Program-
ming Interface (API) functions implemented for building a
highly flexible and runtime-reconfigurable framework. We also
address the step of consolidating the raw telemetry data to
obtain high-level QoS measurements of throughput, delay,
jitter, and Packet Loss Rate (PLR).

This work is organized as follows: Section II reviews related
works, focusing on works addressing high-level QoS moni-
toring. Section III details the framework and its components.
Section IV describes the experimental testing setups, and
Section V presents the results. Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

High-level definitions of INT frameworks have been pre-
sented in multiple standardization efforts. Song et al. [3] de-
scribe a framework for In-situ flow telemetry. Other documents
such as RCF9197 and RFC9378 further detail fields and give
guidance for the implementation and deployment of In-situ
Operations, Administration, and Maintenance (IOAM) systems
[6], [7]. RFC8250 describes a set of optional IPv6 headers for
End-to-End (E2E) flow monitoring, along with descriptions of
fields, limits, data encoding, and metric calculations [8]. These
documents provide relevant insights for the development and
deployment of INT systems. However, as we progressed with
the implementation of the framework, we identified potential
optimization points and components that needed further clar-
ification. In Section III we address these points in detail.



Another relevant standardization document was released by
P4 [9]. The document provides a series of data plane specifi-
cations for INT. The P4 specification gives more detailed low-
level specifications and is also an important source of insights
for the effective implementation of INT frameworks. Similar
to the previous specifications, when a transit node is unable
to provide the data specified by a bit, it must either fill the
corresponding data field with ones or not add any data at all.

Apart from standardization documents, other works in the
literature propose INT implementations tackling issues such
as overhead and measurement accuracy. Common approaches
are based on selectively or probabilistically deciding whether
to add telemetry items to the headers or not [5], [10], [11].
LINT [5] aims at reducing the data plane overhead of INT
by selectively reporting data items based on an estimate of
accuracy loss. Thus, intermediate nodes may or may not
add a certain data item to the packet. A key issue is how
to inform the collector node that only a subset of the data
was transmitted, and the solution to this is left for future
exploration. In our solution, we address this issue along with
the problem of inserting blank fields as part of INT data.

PINT [10] follows a different approach and bounds the
amount of information added to each packet. The requested
telemetry data is probabilistically encoded into several differ-
ent packets. Instead of having a single packet carrying all the
telemetry data, the data are spread over many packets from
the flow. PINT targets use cases of congestion control, path
tracing, and latency measurements, but for our applications, we
require specific measurements of throughput, delay, jitter, and
PLR, which in our understanding, cannot be directly obtained
with the metadata collected by this method.

Runtime programmability can also be helpful to reduce
overhead in addition to giving more flexibility to INT methods.
Sel-INT [11] is a runtime-programmable selective INT system.
The INT header of Sel-INT has a MapInfo field (equivalent to
the trace type of other frameworks) to specify the metadata
to be collected at each hop. The MapInfo is 1-byte wide,
from which 6 bits are already allocated for metrics such as
input/output ports, device ID, hop latency, among others, and a
special value of 0xff is reserved to indicate an invalid MapInfo,
leaving a single bit available for specification of other metrics.
With these fields, we are unable to specify the byte and packet
counters necessary to obtain the throughput and PLR metrics
that we need for our applications.

A previous version of our framework inserts INT headers
between layers 2 and 3, following the header formats that were
under specification for IOAM [12]. The focus of the work
was on demonstrating the use of INT for monitoring wireless
networks and collecting data such as channel, RSSI, and
MCS. The work also showed a proof-of-concept of network
management using INT feedback. Our current framework aims
to combine the strengths of the existing approaches to obtain
a highly configurable INT system to measure the key QoS
metrics of throughput, delay, jitter, and PLR. We define a
per-hop bitmap field that allows the node to indicate which
fields it added. As a consequence, this also allows a node to
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dynamically add a telemetry field, for example, according to
a given probability, a threshold, or other conditions. We also
define an API to allow runtime reconfiguration of the system
to adjust the data collection rate, enable/disable hops, specify
how to process reports, and other useful functions.

III. INT FRAMEWORK

Figure 1 illustrates an overview of the framework archi-
tecture. The framework can operate without a centralized
controller with limited functionality, thus in this paper, we
focus on the use case with central control. The framework has
six elements: 1) INTManager; 2) INTSource; 3) INTInter; 4)
INTSink; 5) INT Controller; and 6) QoS Monitor. Next, we
discuss the header format before describing each element.

A. Header Format

Figure 2 shows the header format, along with the necessary
E2E and Hop-by-Hop (HbH) fields implemented in this work
to collect QoS statistics. The fields of the Main header and
E2E entry header are mandatory. The HbH entry header and
entry data are present when intermediate hops are enabled.

Next header and Header length are IPv6 extension header
fields specifying the next header in the packet and the ex-
tension length. We use 0 for Next header (IPv6 Hop-by-Hop
Option) [13]. The Header length contains the length of the
extension header in 8-byte units, excluding the first 8 bytes.
The Option type Hop-by-Hop with value 0x31 (IOAM Hop-
by-Hop Option) [13] denotes the start of the INT headers. The
Option length represents the size of the HbH data in bytes.

The Namespace in our framework has a different semantic
compared to RFC9197 [6]. It works as a unique identifier for
INT rules, serving as an index for the control structure in



the INTManager. The INT Controller uses the Namespace for
modifying data collection/reporting or removing a rule. If the
Namespace in a packet does not match an installed rule, the
packet is simply forwarded. The Trace Type field specifies
what information to collect, with a 1 indicating to collect and
a 0 to not collect a given metadata. The Trace Type is specified
as a single 32-bit value but divided into two 16-bit parts: i)
HbH trace type uses the least significant bits to determine what
the INTInter elements collect; and the E2E trace type with the
most significant bits setting what the end nodes collect.

Table I lists the trace type bits implemented. Figure 2 shows
the position and size of these fields in the extended headers.
Bit 0 adds a 32-bit counter of INT packets generated (for
debugging only). Bit 1 adds a 64-bit timestamp from the source
node. Bits 2 and 3 add 32-bit counters of transmitted packets
and bytes, respectively. Bits 4 to 15 are not allocated yet and
can be used for other E2E metadata. For the HbH fields, bit 16
adds two 16-bit counters of transmitted and received packets,
respectively. Bit 17 adds a 64-bit timestamp and bit 18 adds
32-bit counters of transmitted and received bytes, respectively.
Bits 19 to 31 are not yet allocated. The HbH TX/RX packet
fields are 16-bits wide and overflow after 65535 packets. To
correctly measure HbH PLR, the rate of packets with INT
headers should ideally stay below 65535, which is typically
the case in realistic use cases. The processing of the fields and
calculation of QoS metrics are detailed in Section III-F.

TABLE I: Trace Type bits

Bit Name Mask (Hex)
0 E2E INTCOUNTER 0x80000000
1 E2E TIMESTAMP 0x40000000
2 E2E TXCOUNTER 0x20000000
3 E2E TX BYTES 0x10000000

4 to 15 Not allocated 0x0FFF0000
16 HBH TXRX COUNTER 0x00008000
17 HBH TIMESTAMP 0x00004000
18 HBH TXRX BYTES 0x00002000

19 to 31 Not allocated 0x00001FFF

The Node ID is a unique specifier of the network elements.
It is used for identifying intermediate network hops during
processing and detecting path changes. This ID is only nec-
essary for intermediate hops, thus, despite being limited to
216 − 1 bits, it can be set to 0 on all end nodes. The HbH
entry trace type allows intermediate nodes to add only the
information they support to the HbH entry data, instead of
populating the unsupported data fields with blank values. If
a node can collect all the requested HbH metadata, then the
HbH entry trace type is equal to the HbH trace type. When
decoding the data, the INT Sink uses this field to know exactly
which fields were added by each node. As a side benefit,
intermediate nodes may decide to add only a subset of HbH
metadata based on, for example, a probability, or a variation
threshold. An optional Padding composed of a Header with
option type 0x01 (PadN) [13], and a 2-bytes fixed length field
is added whenever necessary (depending on trace type) to keep
the extended header 8-bytes aligned.

The E2E entry header comprises the Option Type E2E,
Option length, and E2E trace type. The Option Type E2E
uses the option type value of 0x11 (IOAM E2E Option-
Type) [13]. The Option length specifies the byte-length of the
E2E entry data and E2E trace type. The E2E trace type field
specifies which metadata the end nodes must collect. The E2E
entry data carries telemetry collected by the source node. The
destination node does not append telemetry but processes the
received data to generate a telemetry report.

B. INTManager
The INTManager provides the API for the configuration

of the Source/Sink/Inter elements, as well as the control
structure with monitoring rule specification and temporary
telemetry storage. This is the key element to support runtime
programmability of the framework. The API is based on Ze-
roMQ1 messaging. Configuration of monitoring rules is done
through request/reply sockets, thus every configuration sent by
the control plane gets an immediate confirmation. Telemetry
reports are transmitted using publish/subscribe sockets. The
subscriber runs in server mode at the controller, and the
INTManager runs a publisher client.

1) INT Request: To instruct the framework to monitor a
flow, the controller sends an INT Rule specification with
the format shown in Listing 1, encoded in JavaScript Object
Notation (JSON). The message specifies an int request, with
the unique Namespace identifier (ns id). The Application
identifier (app id) is used to correlate multiple monitored
flows of a single application. For example, to monitor both
the uplink and downlink flows of a video chat application, we
need two rules with distinct ns ids. By attributing the same
app id we know that the reports of both ns ids correspond to
the video chat application.

Listing 1: INT Request message format
1 "int_request": {
2 "ns_id": <number, Namespace ID>,
3 "app_id": <number, Application ID>,
4 "src_ip": <string, source IPv6 address>,
5 "dst_ip": <string, destination IPv6 address>,
6 "src_port": <number, source port, 0 for any>,
7 "dst_port": <number, dest. port, 0 for any>,
8 "protocol": <string, TCP/UDP/ICMP>,
9 "trace_type": <string, trace type in Hex.>,

10 "mode": <string, count/frequency/probability,
11 "mode_setting": <number, value for mode> }

The next fields specify the 5-tuple of flow information:
IPv6 Source and Destination addresses, Protocol (TCP, UDP,
ICMP), Source and Destination ports. A port value of 0
matches any port. Trace type defines the data to be collected
(detailed in Section III-A). The mode defines the sampling
method (i.e. when the INTSource will generate a packet with
INT headers): i) Packet count generate an INT-enabled packet
every N packets; ii) Frequency generates an INT-enabled
packet every N milliseconds; iii) Probability generates with a
probability of N%. The value of N for each mode is specified
by the mode setting parameter.

1https://zeromq.org/
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After rule installation, the INTSource sends the INT Request
in-band to the destination node, embedded in the first data
packet of the flow. Figure 3 shows the header format for such a
packet. The JSON message is encoded in the INT Request field
using Concise Binary Object Representation (CBOR) [14]. We
attributed the Option type 0x32 to this header. If the complete
route is already known by the controller, the rule can be
directly installed on all nodes on the path.

2) Namespace Control Structure: The INTManager keeps
an internal structure for each monitored flow, described in
Listing 2. In addition to the int request fields, the structure
contains the packet and byte counters, which are incremented
every time a packet of the flow is detected, and other auxiliary
fields. The request sent field indicates whether the INT request
was already sent in-band to the destination or not. Only after
sending this request the actual telemetry data can start being
collected. The last request tx stores the timestamp of the last
transmission of the in-band INT Request. The request is re-
sent every pre-defined interval (60 seconds by default) to
enable the monitoring in new nodes if the route changes. It is
also a recovery mechanism in case the first in-band request is
lost or if an intermediate node is reset.

Listing 2: Namespace control structure
1 struct INTNSCtrl {
2 /* int_request fields (omitted) */
3 /* counters tx/rx bytes/packets (omitted) */
4 bool request_sent;
5 Timestamp last_request_tx;
6 bool transmit_report;
7 bool piggyback_report;
8 bool extract_report;
9 bool hop_enabled;

10 Timestamp last_int_tx; }

When a packet with INT metadata reaches the INTSink
element, a report is generated and the next variables con-
trol what must be done with the JSON-encoded report: i)
transmit report field tells whether to publish the report to
the controller; ii) piggyback report send the report in-band
back to the destination; iii) extract report tells whether an
intermediate node should remove a report received in-band
(and transmit it to the controller), forwarding the packet
without the report to the destination. Next, the hop enabled
is used to enable or disable the collection of metadata by
an INTInter element, for the specific Namespace. Lastly, the
last int tx marks the transmission time of the last packet,
required by the sampling mode based on frequency.

INT reports that must be piggybacked to the source are
stored by the INTManager until there is a data packet for
the source node. The INTSource requests pending reports and
sends them in-band in a packet with headers similar to the
shown in Figure 3, but with Option type 0x33. Further details
about the reports are presented later in this section. The items

of lines 6 to 9 of Listing 2 can be modified through API calls
to the INTManager (also mode and mode setting). This allows
the INT system to be runtime-adjustable, e.g., toggling data
collection at certain hops, changing the sampling mode/rate,
or specifying which nodes publish telemetry reports.

C. INTSource

The INTSource determines which packets will carry teleme-
try based on the mode and mode setting. It adds the first
extension headers and collects the first E2E metadata at the
source. For each packet being transmitted, the INTSource
gets the 5-tuple of the flow and queries the INTManager. If
a monitoring rule is defined for the flow, the INTManager
returns the Namespace control structure for further packet
processing and the addition of metadata. If any INT reports
or requests are pending to be sent to the destination, they
are transmitted instead, with higher priority than telemetry
metadata. Before adding the INT headers to any packet, the
INTSource verifies if the resulting packet will not exceed the
MTU. If this is the case, the extended headers are not added.

D. INTInter

Intermediate nodes (routers, switches, WiFi Access Points
(APs)) use the INTInter element to add HbH telemetry data
to packets. If a packet carries an INT request, the request
structure is processed and the Namespace control structure is
created by the INTManager. The metadata collection by the
INTInter element can be enabled or disabled by the controller
through the INTManager, for each Namespace. For example,
if the E2E performance of a flow is satisfactory, HbH metadata
collection can be disabled to reduce data and processing
overhead. If necessary, the intermediate hops can be selectively
enabled to discover which hop is degrading the performance.

When a packet with the INT header is received the element
verifies if there are HbH bits configured in the trace type and
if the addition of the metadata will not exceed the MTU. If
a given metadata is specified by the trace type but cannot be
obtained by the node, the respective bit of the HbH entry trace
type is disabled. The INTInter stacks its metadata just after the
main header (Figure 2), stacking over data from the previous
hop. The INTSink uses this ordering scheme and the Node
ID when it generates the INT report in a way that the QoS
Monitor can interpret the data and calculate the QoS metrics
for each pair of nodes between the source and destination.

E. INTSink

The INTSink decodes and processes the metadata, gener-
ating an INT report. For each hop, it extracts the HbH entry
data to know exactly which fields were added by the INTInter
element. A report in JSON format is created and depending
on how the Namespace is configured, the report is either
stored at the INTManager or published to the controller. All
the extension headers are removed and the packet is further
processed at the higher layers. In the following sections, the
report generated by the INTSink is referred to as raw report.



F. QoS Monitor

The raw INT reports contain values of packet/byte counters,
timestamps, and node ordering information. To obtain mean-
ingful QoS metrics we need further aggregation and processing
of reports by the QoS Monitor. We implement it as a separate
module that can be deployed either at the controller or at
the end nodes. Raw reports are generated for every INT-
enabled packet, thus, depending on sampling rate and flow
characteristics, this can generate a high overhead of reports
published to the controller. Instead, consolidated QoS reports
published once per second are sufficient for most applications.

The QoS Monitor can be configured to calculate the QoS
metrics of throughput, delay, jitter, and PLR in multiple
timescales (e.g., 1 second, 10 seconds, 1 minute). For that,
the QoS Monitor always keeps a record of the most recent
raw reports of each Namespace (1000 samples used around 1
MB of RAM in our measurements). By default, it calculates
the mean values for the last one second. From the four QoS
metrics, only the delay can be calculated with a single raw
report, from the difference of the timestamps from each hop.
The other metrics require at least two raw reports. If the
sampling rate is insufficient, the values are averaged over the
period between the last two reports.

Algorithm 1 describes the throughput calculation. First, we
get the last entry in the table of raw reports, the timestamp of
the last entry, and the RX Bytes of the last entry (lines 1, 2, and
3). Line 4 gets the start timestamp, based on the calculation
period demanded, and line 5 gets the first valid entry near the
baseTS. Lines 6 and 7 get the RX Bytes and timestamp of the
start entry. With these values, we can calculate the transmitted
bytes (endBytes − startBytes) during a period (endTS −
startTS). The condition in line tests if there was an overflow
between the first and last entry and adjusts the counter based
on the maximum possible value of the field. The last two lines
take the difference of the byte counter over time and return
the bytes per second calculation.

Algorithm 1: Calculate Reception Throughput
1: lastEntry ← table[numEntries]
2: endTS ← lastEntry[′timestamp′]
3: lastBytes← lastData[′rxBytes′]
4: baseTS ← endTS − period
5: startData← get first entry(baseTS)
6: startBytes← startData[′rxBytes′]
7: startTS ← startData[′timestamp′]
8: if endBytes < startBytes then
9: endBytes← endBytes+ 4294967296

10: end if
11: difference← endBytes− startBytes
12: return difference/(endTS − startTS)

The PLR calculation follows the same approach from Al-
gorithm 1, but using the packet counters, and the difference
between transmitted and received packets over a period. The
overflow adjustment done in line 9 takes into account whether
the packet counters are from HbH or E2E measurements. If the
counter is from HbH, the value added is 65536 (the maximum

for the 16-bit counter). Lastly, the jitter is calculated through
the difference of sequential samples of delay, also requiring at
least two raw INT reports. The accuracy of timing measure-
ments (i.e. delay and jitter) depends on clock synchronization
between the nodes. In Section V we analyze the measurement
accuracy using different time synchronization methods.

IV. EXPERIMENTAL SETUP

This section details the experimental setup in terms of
topology and hardware. Figure 4 gives an overview of the
topology, consisting of 5 hops, with one source, one desti-
nation, and four switches. For most of the experiments, we
used a fully wired setup, with 2 wired nodes and 4 switches.
The switches are generic industrial mini-pcs with Intel Celeron
J4125 @ 2.0GHz, 8 GB of RAM, and 4x Intel I225-V
Ethernet interfaces. The Source and Destination nodes were
Intel NUCs model NUC11TNH. The nodes were synchronized
via Precision Time Protocol (PTP) with the controller. For
another set of experiments, we configured SW4 as a Wi-Fi
AP, and the destination node was a Wi-Fi Client. We further
specify the test setup in each subsection of Section V.

SW1 SW2

ControllerSource

SW3
SW4/AP

Destination

Hop 1

Hop 2 Hop 3 Hop 4

Hop 5

Fig. 4: Topology used for experimental evaluation

A. Software tools

The INTManager, INTSource, INTInter, and INTSink were
created as elements of Click Router [15]. The INT Con-
troller and the QoS Monitor were implemented in Python.
All experiments used trace type 0x7000E000, enabling E2E
bits 1, 2, 3 and HbH bits 16, 17, and 18. We used three
tools for traffic generation: Multi-Generator (MGEN) Network
Test Tool2, Iperf33, and ping. We used MGEN with two
types of UDP traffic: i) constant, sending 10000 Packets Per
Second (pps), each with 500 bytes of payload, resulting in a
throughput of 44.96 Mbps; ii) bursty, interleaving bursts of
packet transmissions with silent periods, where it generates
a burst of 10000 pps of 500 bytes for 2 seconds. Each burst
occurs in random intervals with a mean duration of 5 seconds.
We used Iperf and ping to evaluate the performance impact,
and accuracy with NTP synchronization, respectively.

B. Test Cases

To assess monitoring accuracy, we devised test cases fo-
cusing on different QoS metrics. Using Traffic Control (TC)
Network Emulator (NETEM) (tc-netem4), we applied perfor-
mance impairments on different hops and compared the im-
pairment values with measurements from the INT framework.

2www.nrl.navy.mil/itd/ncs/products/mgen
3https://iperf.fr/
4https://man7.org/linux/man-pages/man8/tc-netem.8.html



For this comparison, we account for the composition mode of
metrics along the path. The metrics of interest (i.e., throughput,
delay, jitter, and PLR) are composed in distinct ways [16].
Considering a path p = (i, j, k, ..., l,m) the compositions are
as follows: i) Throughput is concave, described by Equation 1,
being limited by the minimum throughput among all pairs in
the path between i and m; ii) Delay and Jitter are additive. The
values accumulate along the path, as described in Equation 2;
iii) The composition for PLR probability is multiplicative, as
described by Equation 3.

T (p) = min[t(i,j), t(j,k), ..., t(l,m)] (1)

D(p) = d(i,j) + d(j,k) + ...+ d(l,m) (2)

L(p) = 1− ((1− l(i,j))× (1− l(j,k))× ...× (1− l(l,m))) (3)

We use these equations to verify whether the measurements
at each hop are in line with the expected values, according
to the impairment set. Table II describes the four test cases
and the impairments set on each hop. Test case 1 focuses
on throughput, starting with 100 Mbps in the first hop, and
gradually decreasing to 10 Mbps in the fourth hop. Test case
2 adds delays at each hop, but no throughput limitations. Test
case 3 adds jitter to the delay values from test case 2. Test
case 4 inserts different PLR probabilities at each hop.

TABLE II: Test cases

Test Metric Hop
Case 1 2 3 4 5

1 Throughput (Mbps) 100 40 20 10 100
2 Delay (ms) 10 5 5 10 20
3 Delay ± Jitter (ms) 10±2 5±1 5±1 5±2 20±4
4 PLR (%) 5 2 5 1 2

V. RESULTS

A. Measurement accuracy

We evaluate measurement accuracy by calculating the Mean
Absolute Error (MAE) between measurements reported by
the framework and the impairments applied with tc-netem.
The jitter and PLR measurements are expected to be slightly
imprecise due to how tc-netem operates. The loss rate set
in tc-netem defines the probability of dropping each packet
before transmission, thus, the real loss is variable during the
experiment. For jitter, the specified value is the upper bound
of variation to be added or subtracted to the delay, for each
packet to be transmitted. This also causes variations between
the delay value configured and the real network delay.

Table III shows the results for throughput measurements,
using the three sampling strategies (packet count, frequency,
and probability). Each row shows the hop, the expected
throughput, and the measurements with each strategy. The last
row shows the MAE over the 120 QoS samples collected, with
a mean error of under 0.50 Mbps for all modes. Figure 5 shows
the measurements for the other metrics during the same set of
experiments. As tc-netem delays the packet transmissions to
achieve the set throughput, we also observe different delays,

jitter, and packet losses caused by queue overflows in bottle-
neck links. Figure 5 shows the mean values of throughput,
delay, and PLR, along with the distribution of jitters during
the experiment with packet count strategy.

TABLE III: Throughput Measurements

Hop Expected Measured (Mbps)
(Mbps) Count Frequency Probability

1 44.96 44.41 43.81 43.81
2 40 39.56 39.10 39.10
3 20 19.85 19.70 19.70
4 10 10.00 9.99 9.99
5 10 9.76 9.74 9.74

E2E 10 9.76 9.74 9.74
MAE 0.2830 0.4916 0.4950
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Fig. 5: Measurements in restricted throughput scenario

At Hop 1 (unlimited throughput) we measured between
43.81 and 44.41 Mbps, slightly below the expected 44.96
Mbps. Hop 2 limits throughput to 40 Mbps, and measurements
range from 39.10 to 39.56 Mbps. The mean delay is 221 ms
with a 10 % PLR. Hop 3 further restricts throughput to 20
Mbps, measured between 19.70 and 19.85 Mbps, with a delay
of 448 ms and 49 % PLR. Hop 4 limits throughput to 10
Mbps, with measurements between 9.74 and 9.76 Mbps. The
mean delay on Hop 4 is 898 ms, and PLR is 49 %. Jitter
distribution (Figure 5) is consistently below 1 ms in all hops.
E2E measurements reflect the composition of intermediate
hops: throughput is limited to 10 Mbps, E2E delay is the sum
of intermediate delays (1568 ms), and the PLR is 76 %, aligned
with the expected composition from Equation 3.

Tables IVa and IVb show the results for delay without jitter,
and delay with jitter, respectively, and Table IVc shows the
results for PLR. Each table shows the value configured with
tc-netem at each hop, and the INT measurements for constant
and bursty traffic obtained using the packet count strategy.
Each row shows the result for a given hop. The last two rows



show the E2E measurements expected (according to Equations
1, 2, and 3) and measured by the framework, and the MAE
over the 120 data points collected.

TABLE IV: Delay, Jitter and Loss measurement accuracy

(a) Delay Measurements

Hop Configured Measured (ms)
(ms) Constant Bursty

1 10 10.02 10.03
2 5 5.03 5.02
3 5 5.02 5.02
4 10 10.02 10.02
5 20 20.01 20.01

E2E 50 50.09 50.09
MAE 0.0310 0.0315

(b) Delay and Jitter Measurements

Hop
Configured Measured (ms)

(ms) Constant Bursty
Delay Jitter Delay Jitter Delay Jitter

1 10 2 10.23 1.16 10.14 1.29
2 5 1 5.01 0.70 5.10 0.61
3 5 1 5.07 0.59 5.11 0.76
4 10 2 10.22 1.19 10.05 1.26
5 20 4 20.50 2.80 20.55 2.91

E2E 50 5 51.04 3.43 50.94 3.39
MAE - - 1.3026 1.2815 1.2683 1.2511

(c) Packet Loss Ratio Measurements

Hop Configured Measured (%)
(%) Constant Bursty

1 5 5.01 4.99
2 2 2.00 2.03
3 5 5.00 4.96
4 1 1.00 1.02
5 2 1.99 2.02

E2E 14.2 14.19 14.20
MAE 0.1628 0.1696

In Table IVa, the MAE of delay measurements was under
0.03 ms for both traffic types. When jitter is present (Table
IVb), the MAE increases slightly due to the sampling rate
of INT and how tc-netem inserts the jitter (detailed earlier in
this section). Still, the framework allows us to identify which
hops contribute the most to jitter. For PLR (Table IVc), INT
can precisely identify the HbH and E2E PLR with MAE under
0.17 %. As we use packet counters to detect packet losses, the
system is robust to losses of packets carrying INT data, as long
as at least some of those packets traverse the E2E link.

B. Delay measurements with NTP synchronization

The previous experiments were carried out on a wired
testbed with nodes synchronized with PTP. However, in many
cases, it is infeasible to use PTP (e.g., with Wi-Fi 6 and older
standards). We conducted a set of tests using the SW4 as a Wi-
Fi AP5 and replaced the destination node with a laptop6. We
generated pings with intervals of 0.01 s from the Source to the

5Wi-Fi 5 mode with a Sparklan WNFT-238AX(BT) card, Ubuntu Server
22.04, Linux Kernel 6.4, Hostapd v2.11-devel

6Dell Inspiron 13-7000, with standard Kubuntu 23.10

Destination and monitored both directions with INT. We set
up an NTP server at the controller, to which we synchronized
the nodes with varying intervals (60, 30, 10, 5, and 1 second).

We analyzed the accuracy between the Round-Trip Time
(RTT) measurements returned by ping, and the RTT measured
by INT (sum of one-way delays). Table V shows the MAE
according to synchronization frequency. Without synchroniza-
tion, the MAE was 0.216 ms. However, the analysis of one-
way delays showed values such as -36 seconds, i.e., the clock
of the Source node was 36 seconds in the future, compared
to the clock of the Destination. Despite giving accurate RTT
values, the one-way delays measured were not reliable. With
NTP synchronization, the MAE was under 650 µs.

TABLE V: RTT measurement error between reports by ping
and INT

Frequency None 60s 30s 10s 5s 1s
MAE (ms) 0.216 0.056 0.052 0.052 0.051 0.065
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Fig. 6: Uplink/Downlink offset with NTP synchronization

Figure 6 shows the absolute offset between the measure-
ments in uplink and downlink at the same hop, at the same
time. Each hop was tagged according to the topology of
Figure 4. We observed higher offsets in hops 1 and 2, which
were reduced by increasing the synchronization frequency. The
offset was under 0.7 ms for the other hops in all cases. The
higher offsets of hops 1 and 2 might have been caused by
link asymmetry, despite those hops being wired. Nonetheless,
delay measurement errors of 1.5 ms might still be acceptable
in use cases with high network load, when the experienced
delays can be in the order of tens of milliseconds. In those
cases, the framework can still help to identify bottlenecks.

C. Performance impact

INT monitoring comes with a performance cost from
additional packet processing. We analyzed the performance
degradation versus sampling rate using a simplified topology
with SW2 as an end node. We generated iperf traffic from the
Source, passing through SW1, until the server on SW2. The
maximum link capacity is 2.5 Gbps, but as we used Click
without optimizations such as eXpress Data Path (XDP) [17],



the base performance that we achieved was around 1.33 Gbps.
We executed 30 iperf runs of 30 seconds for each test scenario.
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Fig. 7: Performance impact of monitoring frequency

Figure 7 shows the throughput for each sampling rate. There
is a performance drop of 7.27 % for the TCP flow when
adding INT once every 100 packets (1/100). Reducing this
rate to 1/1000 packets improves the throughput by 6.19 %,
and reducing it to 1/10000 improves the throughput by 7.26 %.
No significant changes were observed for UDP flows. These
results show how the ability to update the sampling rate in
runtime can help to reduce overhead. If E2E performance
degradation is detected, the sampling rate can be adjusted to
help identify the bottleneck. For high-throughput flows or if
the sampling rate is misconfigured during setup, the sampling
rate can later be updated to a more suitable value.

VI. CONCLUSION

This paper presents an INT framework focused on flexible
configuration for efficient data collection in heterogeneous
networks. We provide a detailed description of the framework,
covering implementation decisions, such as messaging library,
internal control structures, configuration structures, and algo-
rithms for extracting high-level QoS metrics from raw reports.
We conducted extensive measurements in a real testbed with
wired and Wi-Fi topologies, and different time synchronization
methods. The fully software-based components are suitable for
solutions based on virtualized elements such as containers and
VMs that require precise and flexible QoS monitoring but do
not have access to advanced programmable hardware features.
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