
A non-invasive social monitoring application for
danger situations based on a edge-based Machine

Learning solution.
Bilal Moussa Fares

University of Antwerp - imec
Antwerp, Belgium

Bilal.MoussaFares@student.uantwerpen.be

Pietro Manzoni
Universitat Politécnica de Valéncia

Valencia, Spain
pmanzoni@disca.upv.es

Johann M. Marquez-Barja
University of Antwerp - imec

Antwerp, Belgium
Johann.Marquez-Barja@uantwerpen.be

Juan-Carlos Cano
Universitat Politécnica de Valéncia

Valencia, Spain
jucano@disca.upv.es

Carlos T. Calafate
Universitat Politécnica de Valéncia

Valencia, Spain
calafate@disca.upv.es

Abstract—In this article, we analyze the use of non-intrusive
monitoring sensors to detect dangerous situations in social events,
a typical example being sexual harassment situations during
parties. Non invasive sensors can be defined as devices that help
measuring some specific parameter of interest remaining hidden
or un-perceived by the user.

We propose a solution based on a social application that
can, in a non intrusive way, detect sexual harassment situations
and generate alerts automatically to the close by people so that
detection of these situations can become quick and independent
from the person being attacked. Our results are still preliminary
but show that the project can certainly be developed into a
working system that can help prevent control crimes from
happening at public gatherings.

I. INTRODUCTION

Danger situations, like fights or sexual harassment attacks,
can occur in public gatherings. According to a cross-sectional
study that surveyed 1,160 female students to study the role
of alcohol in sexual harassment, ninety-five percent of these
assaults were committed by someone the woman knew and
almost half of these assaults involved alcohol consumption
by either the man, the woman, or both [1]. Bianca et al. [2]
conducted 16 in-depth interviews with sexual harassment
victims to analyze their experience. They argued that the often
cross-border culture of music festivals, combined with the site-
specific policing practices and the physical characteristics of
the specific locations, created unique obstacles to reporting and
had a special impact on responding to and trying to prevent
sexual violence at music festivals. There is a vast amount of
research that shows the under reporting of harassment, e.g.,
[3] [4]

Non invasive sensors can be defined as devices that help
measuring some specific parameter of interest remaining
hidden or un-perceived by the user and are being used in
various scenarios. In [5] the author discusses a mobile sensing
method for mapping the mobility of people in large-scale

events using participatory Bluetooth sensing methods. This
non-intrusive technology for collecting spatio-temporal data
about participant mobility and social interaction uses the
functions of a Bluetooth-enabled smartphone carried by the
participant. In [6] the authors describe the development of a
light, comfortable, and non-invasive wearable system for the
evaluation of cervical spine mobility and the measurement of
cervical range of motion are important methods used in clinical
settings for diagnosis and prognosis of patients with cervical
spine disorders.

In this work, we propose a solution based on a social
application that can in a non intrusive way detect sexual
harassment situations and generate alerts automatically to
the close by people so that detection of these situation can
become quick and independent from the person being attacked.
This application is integrated in a edge based computing
architecture that simplify its deployment even in areas with
non or low connectivity. More specifically, we use Machine
Learning techniques to turn data measured by a smartphone
embedded physical sensors into meaningful patterns to predict
and analyze human behavior, and in doing so we could raise
alerts or generate data to be shared. The paper is organized as
follows: Section 2 describes the edge-based architecture where
our solution was embedded. Section 3 details the methodology
we used and Section 4 the results obtained. Finally, Section
5 provides more insight regarding the parameters used in our
process and Section 6 offers the final conclusions.

II. THE FUDGE ARCHITECTURE

In this paper, we make use of an edge/fog generic archi-
tecture described here [7] that allows the adoption of edge
solutions in IoT deployments in poorly connected and resource
limited scenarios. In this architecture we integrate, using
microservices, an MQTT based system that can collect ingress
data, handle their persistency, and coordinate data integration



with the cloud using a specific service called aggregator. The
edge stations have a dedicated channel with the aggregator
based on LoRa or WiFi.

This architecture is flexible and robust enough to become
an alternative for the deployment of advanced IoT services
in resource-constrained contexts, allowing the development of
solutions based on edge based Machine Learning like [8], [9].

Figure 1 shows the overall architecture of the FUDGE
system. Its basic structure is based on a central node called
“aggregator” and several edge stations. The edge stations have
a dedicated channel with the aggregator.

Internet

+
…

MQTT 
broker

LoRaCT
P

LoRaCTP

…

MQTT 
broker

…

MQTT 
broker

Lo
Ra

CT
P

Fig. 1: FUDGE’s overall architecture of the proposed system.

The aggregator coordinates the data flow with the edge
nodes using a polling approach. The content forwarder is in
charge of this task. Basically, at the push stage, the content
forwarder sends all the content tagged as Global that are kept
stored by the consistency manager. Moreover, in the pull stage,
the aggregator sends the content that it kept stored since the
previous polling phase. The aggregator returns content whose
topics were registered from any service in the edge node. The
idea behind this is to give the possibility to local processes to
receive both (1) replies to requests sent locally and (2) data
from other services in the cloud.

III. METHODOLOGY

To reach our goal of non-intrusively detecting dangerous
situations for women at parties, multiple steps needed to be
taken. We first had to gather sensor data from our data source,
which is the smartphone. The data needed to be communicated
to our server, to this end, we utilized REST as our software
architectural style. Afterwards, the data needs to be stored so
we could analyze it later on. Finally, we use the sensor data to
train a neural network to detect whenever a person is in danger,
this is realized by having the network trained for three states:
sitting, moving, and assault.

A. Gathering the data

The deployment we consider is based on a FUDGE node
to cover the area we want to control and the smartphones
of the users we want to monitor. Including the possibility to
use external non-intrusive sensors is also possible. We could
for example add an external microphone in rooms, or we
could give out accelerometer sensors at the entrance to the
party goers. Once a person (or any other party goer) enters
the building, their data source would connect to the Internet
through the FUDGE node. We designed an app, currently very
simple and for Android based devices, to send data to the
FUDGE node from the data source. Once the data source was
connected and the app launched, sensor data was sent from
the client sensors, i.e., the smartphone sensors, to the FUDGE
node. This data was communicated using REST. We had one
thread in charge on sending the accelerometer, and a second
one to send microphone data every 10 seconds, this recording
is 5 seconds long.

The data received are stored into a database using the
FUDGE architecture. All samples were timestamped and as-
signed a unique ID so that we could filter the data by user and
the timestamp can be used to synchronize the microphone and
accelerometer data if necessary. Once this payload is put into
a suitable FUDGE format, it is published using MQTT and
stored by the FUDGE node in the database.

Fig. 2: Graphical representation of thee accelerometer data.

B. Data preprocessing

After gathering the data, our next step was to analyze it.
This step has multiple sub steps. We needed to first assemble
the data that we want to analyze, then to split the data into
multiple windows before analyzing. Afterwards we could use
the Fast Fourier Transform to analyze the frequency content
of the data. Once that’s done we could extract features from
the analysis and finally we could use the features as inputs
to the neural network so that it could be trained to detect the
danger states.

Using Edge Impulse1 we gathered and preprocessed data
that we collected using our smartphone. We did this in time
steps of five minutes for moving around as well as sitting

1Edge Impulse is a free development platform for machine learning on edge
devices, https://www.edgeimpulse.com



periods. Gathering data for assault was more difficult, to
simulate an assault scenario, two people were needed. One
would play the role of the assailant, while the other would
play the role of the victim. The assailant would get on top
of the victim, and the victim would struggle to get out for
30 seconds. During this period, data was gathered from the
smartphone. The data was gathered at a frequency of 62.5 Hz.

Fig. 3: The gathered accelerometer data, the y-axis contains the
amplitude, while the x-axis contains the time in milliseconds

Usually the inputs to a neural network are not simply
the raw data. The raw data will serve as a basis to extract
features from, these features are the inputs to the neural
network. In the case of accelerometer data, this could be,
among others, the root mean square of the signal. The features
could be extracted using a spectral analysis. The spectral
analysis focuses on the frequency content of a signal. To
do this, we need to compute the frequency domain from a
signal using the Fourier transform, specifically the Fast Fourier
Transform. This transformation can be done using multiple

parameters. This frequency domain will not be calculated for
the entire signal at once, we use windows of a length x
milliseconds to analyze the signal using the spectral analysis,
this window will be sliding y milliseconds after every time
step. To find out which parameters were best, we tested the
network out for multiple windows. We used a window size of
1500 milliseconds, 2000 milliseconds and 2500 milliseconds
with a sliding window of 100 milliseconds.

The signal underwent multiple transformation. First we filter
it to remove unwanted frequencies, the filter that Edge Impulse
uses is the Butterworth filter, which has a flat frequency
response that would leave our desired frequencies unmodified
after applying the filter. Using this filter we can modify the rate
at which the frequency is attenuated by modifying the order of
the filter (Fig. 4), we opted for a high order so the frequency
content that we were interested in would not be attenuated.
We could choose to either use a low pass or high pass filter
depending on what components we want to remove from the
signal. This was not done to erase noise, as the signal itself was
not noisy. Rather we did this to analyze whether high or low
frequencies are more critical in correctly classifying states. So
we chose as a cutoff frequency 3 Hz, which is around half of
the maximum frequency that appeared inside our signal. We
expected a low pass filter to be less effective, seeing as the
movements can change quite fast, as such it would generate a
high frequency which should be detected.

The filtered signal underwent a transformation to the fre-
quency domain using the fast Fourier transform. Considering
that our sampling rate is 62.5 Hz, every window would have
93 to 156 samples. We usually used 2000 milliseconds for our
window, as such we would usually have 125 samples. Our FFT
length had around that same amount of points. We chose to use
a length of 128 points, seeing as every FFT length demands to
be a power of two. We could go higher, however, the resolution
would not go higher with the length (Fig. 5). The new points
would have their power calculated as an interpolation between
the points before and after. This would be useful if we wanted
to see the peaks ourselves, however we do not need to do that.
Furthermore, a higher length would require more computation
time, and seeing as our neural network is accurate enough
with just 128 points (see results), it seemed unnecessary and
counter productive to further calculate more points.

Out of this transformation we get the spectral power graph
as well as the frequency domain graph. The root mean square
of all the axis’ is calculated as a feature, as well as the peaks
in the power graph, the amount of peaks that are calculated is
variable and we can choose that ourselves. Once we have the
height and frequency of the peaks, we can detect the average
power inside power buckets. These buckets are formed by
splitting the power graph into multiple parts, the beginning and
end frequency for this bucket could be modified. The average
power inside these parts was calculated. The end features that
we extracted were the root mean square of the signal, the peak
frequencies along with their heights and the average power
inside the power buckets, this was done for every axis.

All these features could then serve as our input for the neural



network. The network will train itself to link the input features
to the given output, which was either sitting, moving, or
assault. We do this until there are no more windows available
in our signal.

Fig. 4: The magnitude and phase graph of the Butterworth
filter, depending on the order of the filter, the frequency that
is allowed to pass will be flatter.

Fig. 5: The spectral power graph generated using FFT of
variable length, the top figure contains 128 points, the bottom
one contains 1024 points. The x-axis contains the frequency
in Hz and the y-axis contains the power for that frequency.

IV. RESULTS

After training the neural network using multiple parameters,
we have gotten various predictions, some more accurate than
others. The only constant seems to be that moving and sitting
have not been a problem to predict for the neural network. As

expected we had more errors when predicting the assault, the
neural network would regularly predict it as simply moving.

prediction results for window of 1500 ms
Sitting Moving Assault

Low pass 0.955 0.85 0.772
High pass 0.98 0.84 0.82
No filter 0.976 0.857 0.869

prediction results for window of 2000 ms
Sitting Moving Assault

Low pass 0.961 0.879 0.839
High pass 0.989 0.865 0.805
No filter 0.993 0.929 0.894

prediction results for window of 2500 ms
Sitting Moving Assault

Low pass 0.971 0.877 0.84
High pass 0.971 0.899 0.836
No filter 0.996 0.913 0.868

We have first computed results for values using a window
of 1500 ms. This means that the neural network will expect
spectral features as inputs that were calculated using 1.5
seconds of accelerometer data. As expected, the low pass
filter was the least successful in classifying data correctly.
Sitting and moving have not been a problem in neither option
for the filters. The high pass filter did better, with a high
general accuracy and 82 percent of assault data correctly
classified. The best option here was to not add a filter at all,
both high and low frequencies were brought into account and
used to calculate the features. This gave the best effect with
an accuracy of 86.9 percent for correctly classifying assault
moments.

For all the different windows, the only significantly varying
result is the sitting result when using a low pass filter. Both
the window of size 2500 milliseconds and 2000 milliseconds
provided results that were generally a bit better than the
window of size 1500 milliseconds.

accuracy for different peaks with window 2000 ms
Sitting Moving Assault

3 peaks 0.94 0.922 0.894
4 peaks 0.922 0.918 0.897
5 peaks 0.993 0.929 0.894

We can also conclude from the results that having more
peaks provides a slightly more accurate prediction level.
However this increase seems to be too insignificant to sacrifice
processing speed for.

V. THE SENSING PARAMETERS

Our first block was the time series block, here we chose how
we would process our data before analyzing it for features:
what window we will use and how much we will slide the
window every time step. We opted for multiple windows
for experimentation purposes. We expected that the accuracy



would correlate with the length of the time window. This was
the case going from 1500 milliseconds to 2000 milliseconds.
However, above 2000 milliseconds seemed insignificant, this
leads me to conclude that around 2000 milliseconds is the
ideal window length for our limited data set.

One of the first parameters we had to choose was whether or
not we wanted to zero pad our data. This would be especially
useful if our window size was larger than our actual data.
However this was not the case so we did not need that function.
But seeing as it is only used if the window was larger than
the data in it, we saw no harm in applying the zero padding
function in case the window at edge of our data did not check
out anymore even though this would only be one sample out
of thousands.

We had around 15 minutes of data, using a sliding window
of 1500 milliseconds that moves 100 milliseconds after every
time step, this would provide around 9000 samples of data that
we can train our network with. Our goal was to have a loss of
almost 0.01 or less before we actually validate our network.
This was not always the case. Depending on the type of filter
we used, we minimized the loss much faster or slower. Using
no filter minimized the loss much faster, this is likely due to
the features that have much more specific characteristics when
no frequencies were left out.

Fig. 6: The frequency domain of a window moving data, x-axis
is the frequency in Hz while y-axis is amplitude, top figure
shows the filtered signal using Butterworth filter with an order
of 6. The figure on the bottom shows that same signal without
any filter.

The second block was the spectral analysis block. Here we
had to first choose whether or not we wanted to scale our axis’.
The important characteristics of our signal was the amplitudes
in relation to each other, not the amplitudes by themselves.
Changing the scale would not change the proportion of the
amplitude of the different frequencies, as such we did not see

it necessary to scale the axis, instead we left it as is. We chose
to include multiple types of filters and see the difference in
results. Filter are usually used to attenuate noise, however, our
data was not noisy to begin with. Instead, we were interested
in using the filter to see if high frequencies were more present
in our data than low frequencies. To that end, we made our
cutoff frequency to be three Hz, seeing as our data usually had
at most seven Hz as one of the highest frequency. As expected,
the high frequencies were more critical in classifying data than
the lower frequencies and using all the frequencies available
gave an even higher accuracy.

Fig. 7: The frequency domain of a window moving data, x-axis
is the frequency in Hz while y-axis is amplitude for frequency
domain and power for power spectrum. The FFT size is 128
and no filter was used.

The features that are gathered from the spectrogram were
the root mean square of every accelerometer axis as well as
the power peaks and the average power in every power bucket.
We decided to calculate 5 power peaks, the frequency as well
as the height was read out as a feature. Experimentally we
decided that 5 peaks’ worth of information was enough to
have the neural network accurately identify states. However,
we didn’t want to have the peaks too close to each other so
we added a peak threshold of 0.1.

Furthermore, the average power inside of power buckets was
also read out as a feature. These power buckets were from 0.1
to 0.5, from 0.5 to one, from one to two and from two to five.
We have tried out power buckets that were more uniform, from
one to two, two to three, three to four etc... . However they
all generally gave the same results, this suggests that the the
location of certain quantities of power is less important than
the difference between the amount of power in the classified
actions in the same power buckets.

The last step was training of the neural network, here we
had to decide the amount of training cycles among others, our



goal was to minimize the loss. Experimentally we found that
150 epochs was sufficient to go below a loss of one percent.
Seeing as we have a long training cycle, we could afford to
have a lower than average learning rate, instead of 0.0005 we
went with 0.0003. We designed our neural network with four
hidden layers, out of which the first three had 20 nodes, seeing
as the input features were 45 nodes, 15 to 20 seemed like a
good amount of nodes to put in a hidden layer. In the final
layer we reduced it to ten nodes. Furthermore, the features
that were extracted were not always clearly distinguishable.
The root mean square was the only one where one could see
a clear pattern, as for all other features, the pattern was much
less clear (Fig. 8). As such we needed more hidden layers to
generate more complex polynomials that could fit in the data.
This meant more hidden layers, we found that 4 hidden layers
were sufficient to correctly fit the data and not be over fitted
at the same time.

Fig. 8: The root mean square features for the given axis’
attributes.

VI. CONCLUSION

This paper focused on analyzing the use of non-intrusive
monitoring sensors to detect dangerous situations in social
events, a typical example being sexual harassment situations
during parties. Non invasive sensors are defined as devices that
help measuring some specific parameter of interest remaining
hidden or un-perceived by the user.

We proposed a solution based on a social application that
can, in a non intrusive way, detect sexual harassment situations
and generate alerts automatically to the close by people so that
detection of these situation can become quick and independent
from the person being attacked.

We obtained good results in determining the moving and
sitting conditions. As expected we had more errors when
predicting the assault, the neural network would sometime
predict it as simply moving. Our results are still preliminary
but show that the project is certainly a good starting point for
a useful application. We are positive that, with more effort
this first system can be extended into a working system that
can help prevent control crimes from happening at public
gatherings.

ACKNOWLEDGMENTS

This work was partially supported by the “Consel-
leria de Educación, Investigación, Cultura y Deporte,
Direcció General de Ciéncia i Investigació, Proyectos
AICO/2020”, Spain, under Grant AICO/2020/302 and
by the R&D project RTI2018-096384-B-I00, funded by
MCIN/AEI/10.13039/501100011033 and “ERDF A way of
making Europe”.

REFERENCES

[1] A. Abbey, L. T. Ross, D. McDuffie, and P. McAuslan, “Alcohol and
dating risk factors for sexual assault among college women,” Psychology
of Women Quarterly, vol. 20, no. 1, pp. 147–169, 1996. [Online].
Available: https://doi.org/10.1111/j.1471-6402.1996.tb00669.x

[2] B. Fileborn, P. Wadds, and S. Tomsen, “Sexual harassment and violence
at australian music festivals: Reporting practices and experiences of
festival attendees,” Australian & New Zealand Journal of Criminology,
vol. 53, no. 2, pp. 194–212, 2020. [Online]. Available: https:
//doi.org/10.1177/0004865820903777

[3] L. Jussen, T. Lagro-Janssen, J. Leenders, C. Logie, and R. Mijdam,
“Underreported and unknown student harassment at the faculty of
science,” PLOS ONE, vol. 14, no. 4, pp. 1–10, 04 2019. [Online].
Available: https://doi.org/10.1371/journal.pone.0215067

[4] S. J. Aguilar and C. Baek, “Sexual harassment in academe is
underreported, especially by students in the life and physical sciences,”
PLOS ONE, vol. 15, no. 3, pp. 1–18, 03 2020. [Online]. Available:
https://doi.org/10.1371/journal.pone.0230312

[5] A. Stopczynski, J. E. Larsen, S. Lehmann, L. Dynowski, and M. Fuentes,
“Participatory bluetooth sensing: A method for acquiring spatio-temporal
data about participant mobility and interactions at large scale events,”
in 2013 IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops), 2013, pp. 242–247.

[6] M. Maselli, E. Mussi, F. Cecchi, M. Manti, P. Tropea, and C. Laschi, “A
wearable sensing device for monitoring single planes neck movements:
Assessment of its performance,” IEEE Sensors Journal, vol. 18, no. 15,
pp. 6327–6336, 2018.

[7] K. Nakamura, P. Manzoni, M. Zennaro, J.-C. Cano, C. T. Calafate, and
J. M. Cecilia, “Fudge: A frugal edge node for advanced iot solutions
in contexts with limited resources,” in Proceedings of the 1st Workshop
on Experiences with the Design and Implementation of Frugal Smart
Objects. New York, NY, USA: Association for Computing Machinery,
2020, p. 30–35.

[8] Y. Li, Y. Zhuang, X. Hu, Z. Gao, J. Hu, L. Chen, Z. He, L. Pei, K. Chen,
M. Wang, X. Niu, R. Chen, J. Thompson, F. M. Ghannouchi, and N. El-
Sheimy, “Toward location-enabled iot (le-iot): Iot positioning techniques,
error sources, and error mitigation,” IEEE Internet of Things Journal,
vol. 8, no. 6, pp. 4035–4062, 2021.

[9] F. Samie, L. Bauer, and J. Henkel, “From cloud down to things: An
overview of machine learning in internet of things,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4921–4934, 2019.


